2,787 research outputs found
Interactive cutting path analysis programs
The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file
Genus Topology of the Cosmic Microwave Background from the WMAP 3-Year Data
We have independently measured the genus topology of the temperature
fluctuations in the cosmic microwave background seen in the Wilkinson Microwave
Anisotropy Probe (WMAP) 3-year data. A genus analysis of the WMAP data
indicates consistency with Gaussian random-phase initial conditions, as
predicted by standard inflation. We set 95% confidence limits on
non-linearities of -101 < f_{nl} < 107. We also find that the observed low l (l
<= 8) modes show a slight anti-correlation with the Galactic foreground, but
not exceeding 95% confidence, and that the topology defined by these modes is
consistent with that of a Gaussian random-phase distribution (within 95%
confidence).Comment: MNRAS LaTeX style (mn2e.cls), EPS and JPEG figure
Hourly Variability in Q0957+561
We have continued our effort to re-reduce archival Q0957+561 brightness
monitoring data and present results for 1629 R-band images using the methods
for galaxy subtraction and seeing correction reported previously. The new
dataset comes from 4 observing runs, several nights apiece, with sampling of
typically 5 minutes, which allows the first measurement of the structure
function for variations in the R-band from timescales of hours to years.
Comparison of our reductions to previous reductions of the same data, and to
r-band photometry produced at Apache Point Observatory shows good overall
agreement. Two of the data runs, separated by 417 days, permit a sharpened
value for the time delay of 417.4 days, valid only if the time delay is close
to the now-fashionable 417-day value; our data do not constrain a delay if it
is more than three days from this 417-day estimate. Our present results show no
unambiguous signature of the daily microlensing, though a suggestive feature is
found in the data. Both time delay measurement and microlensing searches suffer
from from the lack of sampling at half-day offsets, inevitable at a single
observatory, hence the need for round-the-clock monitoring with participation
by multiple observatories.Comment: AASTeX 4.0 preprint style, 21 pages, 8 EPS figure
The HERE project toolkit: a resource for programme teams interested in improving student engagement and retention
Towards Locating the Brightest Microlensing Events on the Sky
It is estimated that a star brighter than visual magnitude 17 is undergoing a
detectable gravitational microlensing event, somewhere on the sky, at any given
time. It is assumed that both lenses and sources are normal stars drawn from a
standard Bahcall-Soneira model of our Galaxy. Furthermore, over the time scale
of a year, a star 15th magnitude or brighter should undergo a detectable
gravitational lens amplification. Detecting and studying the microlensing event
rate among the brightest 10 stars could yield a better understanding of
Galactic stellar and dark matter distributions. Diligent tracking of bright
microlensing events with even small telescopes might detect planets orbiting
these stellar lenses.Comment: 19 pages, 4 figures, accepted by Ap
Formality and informality in the summative assessment of motor vehicle apprentices: a case study
This article explores the interaction of formal and informal attributes of competence‐based assessment. Specifically, it presents evidence from a small qualitative case study of summative assessment practices for competence‐based qualifications within apprenticeships in the motor industry in England. The data are analysed through applying an adaptation of a framework for exploring the interplay of formality and informality in learning. This analysis reveals informal mentoring as a significant element which influences not only the process of assessment, but also its outcomes. We offer different possible interpretations of the data and their analysis, and conclude that, whichever interpretation is adopted, there appears to be a need for greater capacity‐building for assessors at a local level. This could acknowledge a more holistic role for assessors; recognise the importance of assessors’ informal practices in the formal retention and achievement of apprentices; and enhance awareness of inequalities that may be reinforced by both informal and formal attributes of assessment practices
High-Resolution Continuum Imaging at 1.3 and 0.7 cm of the W3 IRS 5 Region
High-resolution images of the hypercompact HII regions (HCHII) in W3 IRS 5
taken with the Very Large Array (VLA) at 1.3 and 0.7 cm are presented. Four
HCHII regions were detected with sufficient signal-to-noise ratios to allow the
determination of relevant parameters such as source position, size and flux
density. The sources are slightly extended in our ~0.2 arcsecond beams; the
deconvolved radii are less than 240 AU. A comparison of our data with VLA
images taken at epoch 1989.1 shows proper motions for sources IRS 5a and IRS
5f. Between 1989.1 and 2002.5, we find a proper motion of 210 mas at a position
angle of 12 deg for IRS 5f and a proper motion of 190 mas at a position angle
of 50 deg for IRS 5a. At the assumed distance to W3 IRS 5, 1.83 +/- 0.14 kpc,
these offsets translate to proper motions of ~135 km/s and ~122 km/s$
respectively. These sources are either shock ionized gas in an outflow or
ionized gas ejected from high mass stars. We find no change in the positions of
IRS 5d1/d2 and IRS 5b; and we show through a comparison with archival NICMOS
2.2 micron images that these two radio sources coincide with the infrared
double constituting W3 IRS 5. These sources contain B or perhaps O stars. The
flux densities of the four sources have changed compared to the epoch 1989.1
results. In our epoch 2002.5 data, none of the spectral indicies obtained from
flux densities at 1.3 and 0.7 cm are consistent with optically thin free-free
emission; IRS 5d1/d2 shows the largest increase in flux density from 1.3 cm to
0.7 cm. This may be an indication of free-free optical depth within an ionized
wind, a photoevaporating disk, or an accretion flow. It is less likely that
this increase is caused by dust emission at 0.7 cm.Comment: 13 pages, 3 figures To be published in The Astrophysical Journa
Laminar-turbulent boundary-layer transition over a rough rotating disk
Boundary-layer transition over a disk spinning under water is investigated. Transitional Reynolds numbers, Re-c, and associated boundary-layer velocity profiles are determined from flow-visualizations and hot-film measurements, respectively. The value of Re-c and the velocity profiles are studied as a function of the disk's surface roughness. It is found that transition over rough disks occurs in a similar fashion to that over smooth disks, i.e., abruptly and axisymmetrically at well-defined radii. Wall roughness has little effect on Re-c until a threshold relative roughness is reached. Above the threshold Re-c decreases sharply. The decrease is consistent with the drop one expects for our flow for the absolute instability discovered by Lingwood [J. Fluid Mech. 299, 17 (1995); 314, 373 (1996); 331, 405 (1997)]. This indicates that the Lingwood absolute instability may continue to play a major role in the transition process even for large relative roughness. (C) 2003 American Institute of Physics
Streaming Algorithm for Euler Characteristic Curves of Multidimensional Images
We present an efficient algorithm to compute Euler characteristic curves of
gray scale images of arbitrary dimension. In various applications the Euler
characteristic curve is used as a descriptor of an image.
Our algorithm is the first streaming algorithm for Euler characteristic
curves. The usage of streaming removes the necessity to store the entire image
in RAM. Experiments show that our implementation handles terabyte scale images
on commodity hardware. Due to lock-free parallelism, it scales well with the
number of processor cores. Our software---CHUNKYEuler---is available as open
source on Bitbucket.
Additionally, we put the concept of the Euler characteristic curve in the
wider context of computational topology. In particular, we explain the
connection with persistence diagrams
- …
