590 research outputs found
Postoperative pain surveys in Italy from 2006 and 2012. (POPSI and POPSI-2)
OBJECTIVE:
Despite established standards, effective treatments, and evidence-based guidelines, postoperative pain control in Italy and other parts of the world remains suboptimal. Pain control has been recognized as a fundamental human right. Effective treatments exist to control postsurgical pain. Inadequate postoperative analgesia may prolong the length of hospital stays and may adversely impact outcomes.
MATERIALS AND METHODS:
The same multiple-choice survey administered at the SIAARTI National Congress in Perugia in 2006 (n=588) was given at the SIAARTI National Congress in Naples, Italy in 2012 (n=635). The 2012 survey was analysed and compared to the 2006 results.
RESULTS:
Postoperative pain control in Italy was less than optimal in 2006 and showed no substantial improvements in 2012. Geographical distinctions were evident with certain parts of Italy offering better postoperative pain control than other. Fewer than half of hospitals represented had an active Acute Pain Service (APS) and only about 10% of postsurgical patients were managed according to evidence-based guidelines. For example, elastomeric pumps for continuous IV infusion are commonly used in Italy, although patient-controlled analgesia systems are recommended in the guidelines. The biggest obstacles to optimal postoperative pain control reported by respondents could be categorized as organizational, cultural, and economic.
CONCLUSIONS:
There is considerable room for improvement in postoperative pain control in Italy, specifically in the areas of clinical education, evidence-based treatments, better equipment, and implementation of active APS departments in more hospitals. Two surveys taken six years apart in Italy reveal, with striking similarity, that there are many unmet needs in postoperative pain control and that Italy still falls below European standards for postoperative pain control
Liquid Limits: The Glass Transition and Liquid-Gas Spinodal Boundaries of Metastable Liquids
The liquid-gas spinodal and the glass transition define ultimate boundaries
beyond which substances cannot exist as (stable or metastable) liquids. The
relation between these limits is analyzed {\it via} computer simulations of a
model liquid. The results obtained indicate that the liquid - gas spinodal and
the glass transition lines intersect at a finite temperature, implying a glass
- gas mechanical instability locus at low temperatures. The glass transition
lines obtained by thermodynamic and dynamic criteria agree very well with each
other.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let
Numerical study of a short-range p-spin glass model in three dimensions
In this work we study numerically a short range p-spin glass model in three
dimensions. The behaviour of the model appears to be remarkably different from
mean field predictions. In fact it shares some features typical of models with
full replica-symmetry breaking (FRSB). Nevertheless, we believe that the
transition that we study is intrinsically different from the FRSB and basically
due to non-perturbative contributions. We study both the statics and the
dynamics of the system which seem to confirm our conjectures.Comment: 20 pages, 15 figure
Statistical Physics of Structural Glasses
This paper gives an introduction and brief overview of some of our recent
work on the equilibrium thermodynamics of glasses. We have focused onto first
principle computations in simple fragile glasses, starting from the two body
interatomic potential. A replica formulation translates this problem into that
of a gas of interacting molecules, each molecule being built of atoms, and
having a gyration radius (related to the cage size) which vanishes at zero
temperature. We use a small cage expansion, valid at low temperatures, which
allows to compute the cage size, the specific heat (which follows the Dulong
and Petit law), and the configurational entropy. The no-replica interpretation
of the computations is also briefly described. The results, particularly those
concerning the Kauzmann tempaerature and the configurational entropy, are
compared to recent numerical simulations.Comment: 21 pages, 6 figures, to appear in the proceedings of the Trieste
workshop on "Unifying Concepts in Glass Physics
Microscopic theory of network glasses
A molecular theory of the glass transition of network forming liquids is
developed using a combination of self-consistent phonon and liquid state
approaches. Both the dynamical transition and the entropy crisis characteristic
of random first order transitions are mapped out as a function of the degree of
bonding and the density. Using a scaling relation for a soft-core model to
crudely translate the densities into temperatures, the theory predicts that the
ratio of the dynamical transition temperature to the laboratory transition
temperature rises as the degree of bonding increases, while the Kauzmann
temperature falls relative to the laboratory transition. These results indicate
why highly coordinated liquids should be "strong" while van der Waals liquids
without coordination are "fragile".Comment: slightly revised version that has been accepted for publication in
Phys. Rev. Let
The Glass Transition and Liquid-Gas Spinodal Boundaries of Metastable Liquids
A liquid can exist under conditions of thermodynamic stability or
metastability within boundaries defined by the liquid-gas spinodal and the
glass transition line. The relationship between these boundaries has been
investigated previously using computer simulations, the energy landscape
formalism, and simplified model calculations. We calculate these stability
boundaries semi-analytically for a model glass forming liquid, employing
accurate liquid state theory and a first-principles approach to the glass
transition. These boundaries intersect at a finite temperature, consistent with
previous simulation-based studies.Comment: Minor text revisions. Fig.s 4, 5 update
Exchange Monte Carlo Method and Application to Spin Glass Simulations
We propose an efficient Monte Carlo algorithm for simulating a
``hardly-relaxing" system, in which many replicas with different temperatures
are simultaneously simulated and a virtual process exchanging configurations of
these replica is introduced. This exchange process is expected to let the
system at low temperatures escape from a local minimum. By using this algorithm
the three-dimensional Ising spin glass model is studied. The ergodicity
time in this method is found much smaller than that of the multi-canonical
method. In particular the time correlation function almost follows an
exponential decay whose relaxation time is comparable to the ergodicity time at
low temperatures. It suggests that the system relaxes very rapidly through the
exchange process even in the low temperature phase.Comment: 10 pages + uuencoded 5 Postscript figures, REVTe
Fluctuation dissipation ratio in an aging Lennard-Jones glass
By using extensive Molecular Dynamics simulations, we have determined the
violation of the fluctuation-dissipation theorem in a Lennard-Jones liquid
quenched to low temperatures. For this we have calculated , the ratio
between a one particle time-correlation function and the associated
response function. Our results are best fitted by assuming that is a
discontinuous, piecewise constant function. This is similar to what is found in
spin systems with one step replica symmetry breaking. This strengthen the
conjecture of a similarity between the phase space structure of structural
glasses and such spin systems.Comment: improved data and metho
Spin-Glass Model for Inverse Freezing
We analyze the Blume-Emery-Griffiths model with disordered magnetic
interaction displaying the inverse freezing phenomenon. The behaviour of this
spin-1 model in crystal field is studied throughout the phase diagram and the
transition and spinodal lines for the model are computed using the Full Replica
Symmetry Breaking Ansatz that always yelds a thermodynamically stable phase. We
compare the results both with the quenched disordered model with Ising spins on
lattice gas - where no reentrance takes place - and with the model with
generalized spin variables recently introduced by Schupper and Shnerb [Phys.
Rev. Lett. 93, 037202 (2004)]. The simplest version of all these models, known
as Ghatak-Sherrington model, turns out to hold all the general features
characterizing an inverse transition to an amorphous phase, including the right
thermodynamic behavior.Comment: 6 pages, 4 figures, to appear in the Proceeding for the X
International Workshop on Disordered Systems (2006), Molveno, Ital
- …
