167 research outputs found
Survival of microorganisms in desert soil exposed to five years of continuous very high vacuum
Microorganism survivability in desert algal soil crust under continuous very high vacuu
Survival of Antarctic desert soil bacteria exposed to various temperatures and to three years of continuous medium-high vacuum
Survival of Antarctic dessert soil bacteria exposed to various temperatures and to three years of continuous medium-high vacuu
Asteroseismology from space: The δ Scuti star θ^2 Tauri monitored by the WIRE satellite
The bright variable star θ^2 Tau was monitored with the star camera on the Wide–Field Infrared Explorer satellite. Twelve independent frequencies were detected down to the 0.5 mmag amplitude level. Their reality was investigated by searching for them using two different algorithms and by some internal checks: both procedures strengthened our confidence in the results. All the frequencies are in the range 10.8–14.6 cd^(-1). The histogram of the frequency spacings shows that 81% are below 1.8 cd^(-1); rotation may thus play a role in the mode excitation. The fundamental radial mode is not observed, although it is expected to occur in a region where the noise level is very low (55 μmag). The rms residual is about two times lower than that usually obtained from successful ground–based multisite campaigns. The comparison of the results of previous campaigns with the new ones establishes the amplitude variability of some modes
Preliminary Results from NEOWISE: An Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science
The Wide-field Infrared Survey Explorer (WISE) has surveyed the entire sky at four infrared wavelengths with greatly improved sensitivity and spatial resolution compared to its predecessors, the Infrared Astronomical Satellite and the Cosmic Background Explorer. NASA's Planetary Science Division has funded an enhancement to the WISE data processing system called "NEOWISE" that allows detection and archiving of moving objects found in the WISE data. NEOWISE has mined the WISE images for a wide array of small bodies in our solar system, including near-Earth objects (NEOs), Main Belt asteroids, comets, Trojans, and Centaurs. By the end of survey operations in 2011 February, NEOWISE identified over 157,000 asteroids, including more than 500 NEOs and ~120 comets. The NEOWISE data set will enable a panoply of new scientific investigations
Evolutionary model and oscillation frequencies for alpha Ursae Majoris: A comparison with observations
Inspired by the observations of low-amplitude oscillations of alpha Ursae Majoris A by Buzasi et al. using the WIRE satellite, a,grid of stellar evolutionary tracks has been constructed to derive physically consistent interior models for the nearby red giant. The pulsation properties of these models were then calculated and compared with the observations. It is found that, by adopting the correct metallicity and for a normal helium abundance, only models in the mass range of 4.0-4.5 M. fall within the observational error box for alpha UMa A. This mass range is compatible, within the uncertainties, with the mass derived from the astrometric mass function. Analysis of the pulsation spectra of the models indicates that the observed alpha UMa oscillations can be most simply interpreted as radial (i.e., l = 0) p-mode oscillations of low radial order n. The lowest frequencies observed by Buzasi et al. are compatible, within the observational errors, with model frequencies of radial orders n = 0, 1, and 2 for models in the mass range of 4.0-4.5 M.. The higher frequencies observed can also be tentatively interpreted as higher n-valued radial p-modes, if we allow that some n-values are not presently observed. The theoretical l = 1, 2, and 3 modes in the observed frequency range are g-modes with a mixed mode character, that is, with p-mode-like characteristics near the surface and g-mode-like characteristics in the interior The calculated radial p-mode frequencies are nearly equally spaced, separated by 2-3 mu HZ. The nonradial modes are very densely packed throughout the observed frequency range and, even if excited to significant amplitudes at the surface, are unlikely to be resolved by the present observations
Survey Simulations of a New Near-Earth Asteroid Detection System
We have carried out simulations to predict the performance of a new
space-based telescopic survey operating at thermal infrared wavelengths that
seeks to discover and characterize a large fraction of the potentially
hazardous near-Earth asteroid (NEA) population. Two potential architectures for
the survey were considered: one located at the Earth-Sun L1 Lagrange point, and
one in a Venus-trailing orbit. A sample cadence was formulated and tested,
allowing for the self-follow-up necessary for objects discovered in the daytime
sky on Earth. Synthetic populations of NEAs with sizes >=140 m in effective
spherical diameter were simulated using recent determinations of their physical
and orbital properties. Estimates of the instrumental sensitivity, integration
times, and slew speeds were included for both architectures assuming the
properties of new large-format 10 um detector arrays capable of operating at
~35 K. Our simulation included the creation of a preliminary version of a
moving object processing pipeline suitable for operating on the trial cadence.
We tested this pipeline on a simulated sky populated with astrophysical sources
such as stars and galaxies extrapolated from Spitzer and WISE data, the catalog
of known minor planets (including Main Belt asteroids, comets, Jovian Trojans,
etc.), and the synthetic NEA model. Trial orbits were computed for simulated
position-time pairs extracted from the synthetic surveys to verify that the
tested cadence would result in orbits suitable for recovering objects at a
later time. Our results indicate that the Earth-Sun L1 and Venus-trailing
surveys achieve similar levels of integral completeness for potentially
hazardous asteroids larger than 140 m; placing the telescope in an interior
orbit does not yield an improvement in discovery rates. This work serves as a
necessary first step for the detailed planning of a next-generation NEA survey.Comment: AJ accepted; corrected typ
Detection of a Nearby Halo Debris Stream in the WISE and 2MASS Surveys
Combining the Wide-Field Infrared Survey Explorer All-Sky Release with the Two Micron All Sky Survey Point Source Catalog, we detect a nearby, moderately metal-poor stellar debris stream spanning 24° across the southern sky. The stream, which we designate Alpheus, is at an estimated distance of ~1.9 kpc. Its position, orientation, width, estimated metallicity, and, to some extent, its distance, are in approximate agreement with what one might expect of the leading tidal tail of the southern globular cluster NGC 288
The Calibration and Data Products of the Galaxy Evolution Explorer
We describe the calibration status and data products pertaining to the GR2
and GR3 data releases of the Galaxy Evolution Explorer (GALEX). These releases
have identical pipeline calibrations that are significantly improved over the
GR1 data release. GALEX continues to survey the sky in the Far Ultraviolet
(FUV, ~154 nm) and Near Ultraviolet (NUV, ~232 nm) bands, providing
simultaneous imaging with a pair of photon counting, microchannel plate, delay
line readout detectors. These 1.25 degree field-of-view detectors are
well-suited to ultraviolet observations because of their excellent red
rejection and negligible background. A dithered mode of observing and photon
list output pose complex requirements on the data processing pipeline,
entangling detector calibrations and aspect reconstruction algorithms. Recent
improvements have achieved photometric repeatability of 0.05 and 0.03 mAB in
the FUV and NUV, respectively. We have detected a long term drift of order 1%
FUV and 6% NUV over the mission. Astrometric precision is of order 0.5" RMS in
both bands. In this paper we provide the GALEX user with a broad overview of
the calibration issues likely to be confronted in the current release.
Improvements are likely as the GALEX mission continues into an extended phase
with a healthy instrument, no consumables, and increased opportunities for
guest investigations.Comment: Accepted to the ApJS (a special GALEX issue
- …
