10,981 research outputs found
A NASA high-power space-based laser research and applications program
Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail
Radio Astronomical Polarimetry and the Lorentz Group
In radio astronomy the polarimetric properties of radiation are often
modified during propagation and reception. Effects such as Faraday rotation,
receiver cross-talk, and differential amplification act to change the state of
polarized radiation. A general description of such transformations is useful
for the investigation of these effects and for the interpretation and
calibration of polarimetric observations. Such a description is provided by the
Lorentz group, which is intimately related to the transformation properties of
polarized radiation. In this paper the transformations that commonly arise in
radio astronomy are analyzed in the context of this group. This analysis is
then used to construct a model for the propagation and reception of radio
waves. The implications of this model for radio astronomical polarimetry are
discussed.Comment: 10 pages, accepted for publication in Astrophysical Journa
Alignments of Voids in the Cosmic Web
We investigate the shapes and mutual alignment of voids in the large scale
matter distribution of a LCDM cosmology simulation. The voids are identified
using the novel WVF void finder technique. The identified voids are quite
nonspherical and slightly prolate, with axis ratios in the order of c:b:a
approx. 0.5:0.7:1. Their orientations are strongly correlated with significant
alignments spanning scales >30 Mpc/h.
We also find an intimate link between the cosmic tidal field and the void
orientations. Over a very wide range of scales we find a coherent and strong
alignment of the voids with the tidal field computed from the smoothed density
distribution. This orientation-tide alignment remains significant on scales
exceeding twice the typical void size, which shows that the long range external
field is responsible for the alignment of the voids. This confirms the view
that the large scale tidal force field is the main agent for the large scale
spatial organization of the Cosmic Web.Comment: 10 pages, 4 figures, submitted to MNRAS, for high resolution version,
see http://www.astro.rug.nl/~weygaert/tim1publication/voidshape.pd
Disks, Tori, and Cocoons: Emission and Absorption Diagnostics of AGN Environments
One of the most important problems in the study of active galaxies is
understanding the detailed geometry, physics, and evolution of the central
engines and their environments. The leading models involve an accretion disk
and torus structure around a central dense object, thought to be a supermassive
black hole. Gas found in the environment of AGN is associated with different
structures: molecular accretion disks, larger scale atomic tori, ionized and
neutral "cocoons" in which the nuclear regions can be embedded. All of them can
be studied at radio wavelengths by various means. Here, we summarize the work
that has been done to date in the radio band to characterize these structures.
Much has been learned about the central few parsecs of AGN in the last few
decades with contemporary instruments but the picture remains incomplete. In
order to be able to define a more accurate model of this region, significant
advances in sensitivity, spectral and angular resolution, and bandpass
stability are required. The necessary advances will only be provided by the
Square Kilometer Array and we discuss the possibilities that these dramatic
improvements will open for the study of the gas in the central region of AGN.Comment: To appear in "Science with the Square Kilometer Array," eds. C.
Carilli and S. Rawlings, New Astronomy Reviews (Elsevier: Amsterdam); 17
pages, 7 figures (four of them in separate gif/tif files) The full paper with
high resolution images can be downloaded from
http://www.astron.nl/~morganti/Papers/AGNenvironment.ps.g
Color naming across languages reflects color use
What determines how languages categorize colors? We analyzed results of the World Color Survey (WCS) of 110 languages to show that despite gross differences across languages, communication of chromatic chips is always better for warm colors (yellows/reds) than cool colors (blues/greens). We present an analysis of color statistics in a large databank of natural images curated by human observers for salient objects and show that objects tend to have warm rather than cool colors. These results suggest that the cross-linguistic similarity in color-naming efficiency reflects colors of universal usefulness and provide an account of a principle (color use) that governs how color categories come about. We show that potential methodological issues with the WCS do not corrupt information-theoretic analyses, by collecting original data using two extreme versions of the color-naming task, in three groups: the Tsimane’, a remote Amazonian hunter-gatherer isolate; Bolivian-Spanish speakers; and English speakers. These data also enabled us to test another prediction of the color-usefulness hypothesis: that differences in color categorization between languages are caused by differences in overall usefulness of color to a culture. In support, we found that color naming among Tsimane’ had relatively low communicative efficiency, and the Tsimane’ were less likely to use color terms when describing familiar objects. Color-naming among Tsimane’ was boosted when naming artificially colored objects compared with natural objects, suggesting that industrialization promotes color usefulness.National Science Foundation (U.S.) (Award 1534318
Direct and indirect effects of mood on risk decision making in safety-critical workers
The study aimed to examine the direct influence of specific moods (fatigue, anxiety, happiness) on risk in safety-critical decision making. It further aimed to explore indirect effects, specifically, the potential mediating effects of information processing assessed using a goodness-of-simulation task. Trait fatigue and anxiety were associated with an increase in risk taking on the Safety-Critical Personal Risk Inventory (S-CPRI), however the effect of fatigue was partialled out by anxiety. Trait happiness, in contrast was related to less risky decision making. Findings concerning the ability to simulate suggest that better simulators made less risky decisions. Anxious workers were generally less able to simulate. It is suggested that in this safety-critical environment happiness had a direct effect on risk decision making while the effect of trait anxiety was mediated by goodness-of-simulation
A circumnuclear disk of atomic hydrogen in Centaurus A
We present new observations, performed with the Australia Telescope Compact
Array, of the HI absorption in the central regions of Centaurus A. For the
first time, absorption is detected against the radio core at velocities
blueshifted with respect to the systemic velocity. Moreover, the data show that
the nuclear redshifted absorption component is broader than reported before.
With these new results, the kinematics of the HI in the inner regions of Cen A
appears very similar to that observed in emission for the molecular
circumnuclear disk. This suggests that the central HI absorption is not, as was
previously claimed, evidence of gas infall into the AGN, but instead is due to
a cold, circumnuclear disk.Comment: Accepted for publication in A&A Letter, 4 pages, 2 figure
HOMFLY and superpolynomials for figure eight knot in all symmetric and antisymmetric representations
Explicit answer is given for the HOMFLY polynomial of the figure eight knot
in arbitrary symmetric representation R=[p]. It generalizes the old
answers for p=1 and 2 and the recently derived results for p=3,4, which are
fully consistent with the Ooguri-Vafa conjecture. The answer can be considered
as a quantization of the \sigma_R = \sigma_{[1]}^{|R|} identity for the
"special" polynomials (they define the leading asymptotics of HOMFLY at q=1),
and arises in a form, convenient for comparison with the representation of the
Jones polynomials as sums of dilogarithm ratios. In particular, we construct a
difference equation ("non-commutative A-polynomial") in the representation
variable p. Simple symmetry transformation provides also a formula for
arbitrary antisymmetric (fundamental) representation R=[1^p], which also passes
some obvious checks. Also straightforward is a deformation from HOMFLY to
superpolynomials. Further generalizations seem possible to arbitrary Young
diagrams R, but these expressions are harder to test because of the lack of
alternative results, even partial.Comment: 14 page
Electroviscous effects of simple electrolytes under shear
On the basis of a hydrodynamical model analogous to that in critical fluids,
we investigate the influences of shear flow upon the electrostatic contribution
to the viscosity of binary electrolyte solutions in the Debye-H\"{u}ckel
approximation. Within the linear-response theory, we reproduce the classical
limiting law that the excess viscosity is proportional to the square root of
the concentration of the electrolyte. We also extend this result for finite
shear. An analytic expression of the anisotropic structure factor of the charge
density under shear is obtained, and its deformation at large shear rates is
discussed. A non-Newtonian effect caused by deformations of the ionic
atmosphere is also elucidated for . This finding
concludes that the maximum shear stress that the ionic atmosphere can support
is proportional to , where , and
are, respectively, the shear rate, the Debye screening
length and the Debye relaxation time with being the relative diffusivity at
the infinite dilution limit of the electrolyte.Comment: 13pages, 2figure
- …
