2,032 research outputs found

    Efficient Digital Signal Processing Techniques and Architectures for On-Board Processors

    Get PDF
    In this paper, we present a number of algorithmic and architectural DSP solutions to be incorporated in digital OBPs for communication satellites to boost the system performance primarily in terms of reducing their power consumption. More specifically this article addresses (1) Infinite impulse response (IIR) implementation of digital filters, (2) Efficiency savings in channeliser FFT twiddle storage and multiplications and their reconfigurable implementation (3) Companding of interconnect data, and (4) Critically sampled/reduced over-sampling channelisation. The applicability and efficiency of these approaches were evaluated in detail during our European Space Agency (ESA) funded research project entitled "Efficient Techniques for On-Board Processing”, undertaken by Airbus Defence and Space and the Applied DSP and VLSI Research Group at the University of Westminster. The results demonstrated noteworthy improvements both in terms of power dissipation, and furthermore in the reduction of circuit complexity for future digital OBPs, which will be shown at the summary of results section

    On board Processor and Processing Strategies for Next Generation Reconfigurable Satellite Payloads

    Get PDF
    Today, the increasing demand in higher data rates necessitates new methods as well as higher flexibility for satellite telecommunication payloads in order to address a variety of applications and customers. This paper presents one of these processing strategies that is applicable to today’s processing satellite payloads aiming to meet those demands. For this purpose, a two-tier filter bank is designed as part of a digital onboard processor, which first divides the spectrum at the output of the ADC into a number of sub-bands extracting all the stacked channels in the digital domain. Following the analysis section of the first tier of operations, the extracted channels go under a secondary channelisation process to obtain much finer granularity of 31.25 kHz or 50 kHz depending on the communication standard used for data transmission. The implementation of the channeliser was delivered on a bit-true simulation model and the input and the output of the channelisers were compared and evaluated both in the time and frequency domains

    Statistical Theory for Incoherent Light Propagation in Nonlinear Media

    Full text link
    A novel statistical approach based on the Wigner transform is proposed for the description of partially incoherent optical wave dynamics in nonlinear media. An evolution equation for the Wigner transform is derived from a nonlinear Schrodinger equation with arbitrary nonlinearity. It is shown that random phase fluctuations of an incoherent plane wave lead to a Landau-like damping effect, which can stabilize the modulational instability. In the limit of the geometrical optics approximation, incoherent, localized, and stationary wave-fields are shown to exist for a wide class of nonlinear media.Comment: 4 pages, REVTeX4. Submitted to Physical Review E. Revised manuscrip

    The Design of Low Complexity Low Power Pipelined Short Length Winograd Fourier Transforms

    Get PDF
    In this paper a novel pipelining approach applicable to Winograd Fourier transforms is presented. The novel approach makes use of reconfigurable multiplier blocks to implement the real multipliers required for the transform as well as sharing the hardware resources among additions. The additions are realized using modified forms of butterfly circuits. The novel approach is tested on a 5-point Winograd Fourier transform and the circuit area and power dissipation of the design are estimated using an in-house power estimation tool and compared to the state-of-the- art approaches

    Quantum Particles Constrained on Cylindrical Surfaces with Non-constant Diameter

    Full text link
    We present a theoretical formulation of the one-electron problem constrained on the surface of a cylindrical tubule with varying diameter. Because of the cylindrical symmetry, we may reduce the problem to a one-dimensional equation for each angular momentum quantum number mm along the cylindrical axis. The geometrical properties of the surface determine the electronic structures through the geometry dependent term in the equation. Magnetic fields parallel to the axis can readily be incorporated. Our formulation is applied to simple examples such as the catenoid and the sinusoidal tubules. The existence of bound states as well as the band structures, which are induced geometrically, for these surfaces are shown. To show that the electronic structures can be altered significantly by applying a magnetic field, Aharonov-Bohm effects in these examples are demonstrated.Comment: 7 pages, 7 figures, submitted to J. Phys. Soc. Jp

    Enzyme-Responsive Snap-Top Covered Silica Nanocontainers

    Get PDF
    Mesoporous silica nanoparticles, capable of storing a payload of small molecules and releasing it following specific catalytic activation by an esterase, have been designed and fabricated. The storage and release of the payload is controlled by the presence of [2]rotaxanes, which consist of tri(ethylene glycol) chains threaded by α-cyclodextrin tori, located on the surfaces of the nanoparticles and terminated by a large stoppering group. These modified silica nanoparticles are capable of encapsulating guest molecules when the [2]rotaxanes are present. The bulky stoppers, which serve to hold the tori in place, are stable under physiological conditions but are cleaved by the catalytic action of an enzyme, causing dethreading of the tori and release of the guest molecules from the pores of the nanoparticles. These snap-top covered silica nanocontainers (SCSNs) are prepared by a modular synthetic method, in which the stoppering unit, incorporated in the final step of the synthesis, may be changed at will to target the response of the system to any of a number of hydrolytic enzymes. Here, the design, synthesis, and operation of model SCSNs that open in the presence of porcine liver esterase (PLE) are reported. The empty pores of the silica nanoparticles were loaded with luminescent dye molecules (rhodamine B), and stoppering units that incorporate adamantyl ester moieties were then attached in the presence of α-cyclodextrin using the copper-catalyzed azide−alkyne cycloaddition (CuAAC), closing the SCSNs. The release of rhodamine-B from the pores of the SCSN, following PLE-mediated hydrolysis of the stoppers, was monitored using fluorescence spectroscopy

    Anomalous Aharonov--Bohm gap oscillations in carbon nanotubes

    Full text link
    The gap oscillations caused by a magnetic flux penetrating a carbon nanotube represent one of the most spectacular observation of the Aharonov-Bohm effect at the nano--scale. Our understanding of this effect is, however, based on the assumption that the electrons are strictly confined on the tube surface, on trajectories that are not modified by curvature effects. Using an ab-initio approach based on Density Functional Theory we show that this assumption fails at the nano-scale inducing important corrections to the physics of the Aharonov-Bohm effect. Curvature effects and electronic density spilled out of the nanotube surface are shown to break the periodicity of the gap oscillations. We predict the key phenomenological features of this anomalous Aharonov-Bohm effect in semi-conductive and metallic tubes and the existence of a large metallic phase in the low flux regime of Multi-walled nanotubes, also suggesting possible experiments to validate our results.Comment: 7 figure

    Mechanically Stabilized Tetrathiafulvalene Radical Dimers

    Get PDF
    Two donor−acceptor [3]catenanes—composed of a tetracationic molecular square, cyclobis(paraquat-4,4′-biphenylene), as the π-electron deficient ring and either two tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) containing macrocycles or two TTF-butadiyne-containing macrocycles as the π-electron rich components—have been investigated in order to study their ability to form TTF radical dimers. It has been proven that the mechanically interlocked nature of the [3]catenanes facilitates the formation of the TTF radical dimers under redox control, allowing an investigation to be performed on these intermolecular interactions in a so-called “molecular flask” under ambient conditions in considerable detail. In addition, it has also been shown that the stability of the TTF radical-cation dimers can be tuned by varying the secondary binding motifs in the [3]catenanes. By replacing the DNP station with a butadiyne group, the distribution of the TTF radical-cation dimer can be changed from 60% to 100%. These findings have been established by several techniques including cyclic voltammetry, spectroelectrochemistry and UV−vis−NIR and EPR spectroscopies, as well as with X-ray diffraction analysis which has provided a range of solid-state crystal structures. The experimental data are also supported by high-level DFT calculations. The results contribute significantly to our fundamental understanding of the interactions within the TTF radical dimers

    A new multivariable 6-psi-6 summation formula

    Full text link
    By multidimensional matrix inversion, combined with an A_r extension of Jackson's 8-phi-7 summation formula by Milne, a new multivariable 8-phi-7 summation is derived. By a polynomial argument this 8-phi-7 summation is transformed to another multivariable 8-phi-7 summation which, by taking a suitable limit, is reduced to a new multivariable extension of the nonterminating 6-phi-5 summation. The latter is then extended, by analytic continuation, to a new multivariable extension of Bailey's very-well-poised 6-psi-6 summation formula.Comment: 16 page

    Atherosclerotic plaque behind the stent changes after bare-metal and drug-eluting stent implantation in humans: Implications for late stent failure?

    Get PDF
    Background and aims The natural history and the role of atherosclerotic plaque located behind the stent (PBS) are still poorly understood. We evaluated the serial changes in PBS following bare-metal (BMS) compared to first-generation drug-eluting stent (DES) implantation and the impact of these changes on in-stent neointimal hyperplasia (NIH). Methods Three-dimensional coronary reconstruction by angiography and intravascular ultrasound was performed after intervention and at 6–10-month follow-up in 157 patients with 188 lesions treated with BMS (n = 89) and DES (n = 99). Results There was a significant decrease in PBS area (−7.2%; p  <  0.001) and vessel area (−1.7%; p  <  0.001) after BMS and a respective increase in both areas after DES implantation (6.1%; p  <  0.001 and 4.1%; p  <  0.001, respectively). The decrease in PBS area significantly predicted neointimal area at follow-up after BMS (β: 0.15; 95% confidence interval [CI]: 0.10–0.20, p  <  0.001) and DES (β: 0.09; 95% CI: 0.07–0.11; p  <  0.001) implantation. The decrease in PBS area was the most powerful predictor of significant NIH after BMS implantation (odds ratio: 1.13; 95% CI: 1.02–1.26; p = 0.02). Conclusions The decrease in PBS area after stent implantation is significantly associated with the magnitude of NIH development at follow-up. This finding raises the possibility of a communication between the lesion within the stent and the underlying native atherosclerotic plaque, and may have important implications regarding the pathobiology of in-stent restenosis and late/very late stent thrombosis
    corecore