546 research outputs found

    Determination of solid mass fraction in partially frozen hydrocarbon fuels

    Get PDF
    Filtration procedures alone are insufficient to determine the amounts of crystalline solid in a partially frozen hydrocarbon distillate fraction. This is due to the nature of the solidification process by which a large amount of liquid becomes entrapped within an interconnected crystalline structure. A technique has been developed to supplement filtration methods with an independent determination of the amount of liquid in the precipitate thereby revealing the actual value of mass percent crystalline solid, %S. A non-crystallizing dye is injected into the fuel and used as a tracer during the filtration. The relative concentrations of the dye in the filtrate and precipitate fractions is subsequently detected by a spectrophotometric comparison. The filtration apparatus was assembled so that the temperature of the sample is recorded immediately above the filter. Also, a second method of calculation has been established which allows significant reduction in test time while retaining acceptable accuracy of results. Data have been obtained for eight different kerosene range hydrocarbon fuels

    Dynamics and Instabilities of Planar Tensile Cracks in Heterogeneous Media

    Full text link
    The dynamics of tensile crack fronts restricted to advance in a plane are studied. In an ideal linear elastic medium, a propagating mode along the crack front with a velocity slightly less than the Rayleigh wave velocity, is found to exist. But the dependence of the effective fracture toughness Γ(v)\Gamma(v) on the crack velocity is shown to destabilize the crack front if (dΓ)/(dv)<0(d\Gamma)/(dv)<0. Short wavelength radiation due to weak random heterogeneities leads to this instability at low velocities. The implications of these results for the crack dynamics are discussed.Comment: 12 page

    A role for tumor necrosis factor-alpha in remodeling the splenic marginal zone during Leishmania donovani infection.

    No full text
    The development of secondary lymphoid organs is a highly regulated process, mediated by tumor necrosis factor (TNF) family cytokines. In contrast, the mechanisms controlling changes in lymphoid architecture that occur during infectious disease are poorly understood. Here we demonstrate that during infection with Leishmania donovani, the marginal zone of mice undergoes extensive remodeling, similar in extent to developmental abnormalities in mice lacking some TNF family cytokines. This process is selective, comprising a dramatic and rapid loss of marginal zone macrophages (MZMs). As a functional consequence, lymphocyte traffic into the white pulp is impaired during chronic leishmaniasis. Significantly, MZMs were preserved in L. donovani-infected B6.TNF-alpha(-/-) mice or mice that received anti-TNF-alpha antibodies, whereas studies in CD8(+) T-cell-deficient mice and in mice lacking functional CD95L, excluded a direct role for either cytotoxic T lymphocyte activity or CD95-mediated apoptosis in this process. Loss of MZMs was independent of parasite burden, yet could be partially prevented by chemotherapy, which in turn reduced endogenous TNF-alpha levels. This is the first report of an infectious agent causing selective and long-lasting changes to the marginal zone via TNF-alpha-mediated mechanisms, and illustrates that those cytokines involved in establishing lymphoid architecture during development, may also play a role in infection-induced lymphoid tissue remodeling

    Tuning photochemistry:substituent effects on πσ* state mediated bond fission in thioanisoles

    Get PDF
    The electronic branching in the thiophenoxyl radicals formed by UV photolysis of thioanisole can be tuned by placing electron withdrawing/donating substituents at the 4-position.</p

    Statistical Physics of Fracture Surfaces Morphology

    Full text link
    Experiments on fracture surface morphologies offer increasing amounts of data that can be analyzed using methods of statistical physics. One finds scaling exponents associated with correlation and structure functions, indicating a rich phenomenology of anomalous scaling. We argue that traditional models of fracture fail to reproduce this rich phenomenology and new ideas and concepts are called for. We present some recent models that introduce the effects of deviations from homogeneous linear elasticity theory on the morphology of fracture surfaces, succeeding to reproduce the multiscaling phenomenology at least in 1+1 dimensions. For surfaces in 2+1 dimensions we introduce novel methods of analysis based on projecting the data on the irreducible representations of the SO(2) symmetry group. It appears that this approach organizes effectively the rich scaling properties. We end up with the proposition of new experiments in which the rotational symmetry is not broken, such that the scaling properties should be particularly simple.Comment: A review paper submitted to J. Stat. Phy

    A fast on-chip profiler memory

    Full text link
    Profiling an application executing on a microprocessor is part of the solution to numerous software and hardware optimization and design automation problems. Most current profiling techniques suffer from runtime overhead, inaccuracy, or slowness, and the traditional non-intrusive method of using a logic analyzer doesn’t work for today’s system-on-a-chip having embedded cores. We introduce a novel on-chip memory architecture that overcomes these limitations. The architecture, which we call ProMem, is based on a pipelined binary tree structure. It achieves single-cycle throughput, so it can keep up with today’s fastest pipelined processors. It can also be laid out efficiently and scales very well, becoming more efficient the larger it gets. The memory can be used in a wide-variety of common profiling situations, such as instruction profiling, value profiling, and network traffic profiling, which in turn can be used to guide numerous design automation tasks

    Towards zero-shot language modeling

    Get PDF
    Can we construct a neural language model which is inductively biased towards learning human language? Motivated by this question, we aim at constructing an informative prior for held-out languages on the task of character-level, open-vocabulary language modeling. We obtain this prior as the posterior over network weights conditioned on the data from a sample of training languages, which is approximated through Laplace’s method. Based on a large and diverse sample of languages, the use of our prior outperforms baseline models with an uninformative prior in both zero-shot and few-shot settings, showing that the prior is imbued with universal linguistic knowledge. Moreover, we harness broad language-specific information available for most languages of the world, i.e., features from typological databases, as distant supervision for held-out languages. We explore several language modeling conditioning techniques, including concatenation and meta-networks for parameter generation. They appear beneficial in the few-shot setting, but ineffective in the zero-shot setting. Since the paucity of even plain digital text affects the majority of the world’s languages, we hope that these insights will broaden the scope of applications for language technology

    Open questions on the physical chemistry of aerosols

    Get PDF

    An atlas of gene regulatory networks reveals multiple three-gene mechanisms for interpreting morphogen gradients

    Get PDF
    Although >450 different topologies can achieve the same multicellular patterning function, they can be grouped into six main classes, which operate using different underlying dynamics.Alternative designs for the same functions can therefore split into two types: (a) topology alterations that retain the same underlying dynamics and (b) alterations that utilize a completely different underlying dynamical mechanism.This segregation of networks into distinct dynamical mechanisms can be revealed by the shape of the topology atlas itself.Cell–cell communication is not usually part of the causal mechanism underlying a band-pass response during morphogen interpretation, but it can tune the result or increase robustness

    Densities of internally mixed organic-inorganic particles from mobility diameter measurements of aerodynamically classified aerosols

    Get PDF
    Accurate knowledge of particle density is essential for many aspects of aerosol science. Yet, density is often characterized poorly and incompletely for internally mixed particles, particularly for dry particles, with previous studies focused primarily on deliquescent (aqueous) droplets. Instead, densities for dry internally mixed particles are often inferred from mass composition measurements in combination with predictive models assuming ideal mixing, with the accuracy of such models not estimated. We determined particle densities from mobility diameter measurements (using a Scanning Mobility Particle Sizer, SMPS) for dried particles classified by their aerodynamic size (using an Aerosol Aerodynamic Classifier, AAC) for a range of two-component organic-inorganic particles containing known proportions of organic and inorganic species. We examined all permutations of mixing between four different organic (water soluble nigrosin dye, citric acid, polyethylene glycol-400, and ascorbic acid) and three different inorganic (sodium chloride, ammonium sulfate, and sodium nitrate) species. The accuracy and precision in our measured particle densities were ∼5% and ∼1%, respectively, for nonvolatile particles. Substantial deviations in particle density from ideal mixing (up to 20%) were observed. We tested descriptions of the non-ideal mixing for our systems by representing the volume change of mixing using Redlich-Kister (RK) polynomials in terms of mass fraction or in terms of mole fraction, with both approaches performing similarly.</p
    corecore