122 research outputs found
Age profiles of sport participants.
Background: Participation in sport has many health benefits, and is popular amongst children. However participation decreases with age. While the membership records of peak sports organisations have improved markedly in recent years, there has been little research into sport participation trends across the lifespan. This study investigates age profiles of participation in sport and compares these trends between genders and residential locations. Methods: De-identified 2011 participant registration data for seven popular Australian sports (Australian Football, Basketball, Cricket, Hockey, Lawn Bowls, Netball and Tennis) were obtained and analysed according to age, gender and geographical location (metropolitan v non-metropolitan) within the state of Victoria, Australia. All data were integrated and sports were analysed collectively to produce broadly based participation profiles while maintaining confidentiality of membership data for individual sports. Results: The total number of registered participants included in the data set for 2011 was 520,102. Most participants (64.1 %) were aged less than 20 years. Nearly one third (27.6 %) of all participants were aged 10–14 years, followed by the 5–9 year age group (19.9 %). Participation declined rapidly during adolescence. A higher proportion of males than female participants were young children (4–7 years) or young adults 18–29 years; this pattern was reversed among 8–17 year-olds. A higher proportion of metropolitan participants were engaged between the ages of 4–13 and 19–29, whereas a higher proportion of non-metropolitan participants played during adolescence (14–18 years) and throughout mature adulthood (30+ years). Conclusions: Increasing participation in sport is an objective for both government and sporting organisations. In order to have both mass population-based participation, from a health policy and elite performance perspective, we need to further explore the findings arising from the analysis of this extensive data set. Such an examination will lead to better understand of the reasons for attrition during adolescence to inform program and policy developments to retain people participating in sport, for a healthy and sport performing nation
CD8+ T cells from a novel T cell receptor transgenic mouse induce liver-stage immunity that can be boosted by blood-stage infection in rodent malaria
To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA) infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather than the liver was the main site of priming and that responses depended on CD8α+ dendritic cells. Importantly, sequential exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable boosting by blood-stage infections
Plasmodium berghei Hsp90 contains a natural immunogenic I-A<sup>b</sup>-restricted antigen common to rodent and human Plasmodium species
Thorough understanding of the role of CD4 T cells in immunity can be greatly assisted by the study of responses to defined specificities. This requires knowledge of Plasmodium-derived immunogenic epitopes, of which only a few have been identified, especially for the mouse C57BL/6 background. We recently developed a TCR transgenic mouse line, termed PbT-II, that produces CD4+ T cells specific for an MHC class II (I-Ab)-restricted Plasmodium epitope and is responsive to both sporozoites and blood-stage P. berghei. Here, we identify a peptide within the P. berghei heat shock protein 90 as the cognate epitope recognised by PbT-II cells. We show that C57BL/6 mice infected with P. berghei blood-stage induce an endogenous CD4 T cell response specific for this epitope, indicating cells of similar specificity to PbT-II cells are present in the naïve repertoire. Adoptive transfer of in vitro activated TH1-, or particularly TH2-polarised PbT-II cells improved control of P. berghei parasitemia in C57BL/6 mice and drastically reduced the onset of experimental cerebral malaria. Our results identify a versatile, potentially protective MHC-II restricted epitope useful for exploration of CD4 T cell-mediated immunity and vaccination strategies against malaria
Family screening in patients with isolated bicuspid aortic valve: Restriction to those with aortic dilatation is not justified
AIM: To determine the prevalence of undiagnosed bicuspid aortic valve (BAV) and isolated aortic dilatation in first-degree relatives (FDRs) of patients with isolated BAV and to explore the recurrence risk of BAV in different subgroups of probands with BAV. Recent American College of Cardiology (ACC)/American Heart Association (AHA) Guidelines recommend family screening in patients with associated aortopathy only. METHODS: During follow-up visits, patients with isolated BAV received a printed invitation for their FDRs advising cardiac screening. RESULTS: From 2012-2019, 257 FDRs of 118 adult BAV patients were screened, among whom 63 (53%) index patients had undergone aortic valve surgery (AVS), including concomitant aortic replacement in 25 (21%). Of the non-operated index patients, 31 (26%) had aortic dilatation (> 40 mm). Mean age of the FDRs was 48 years (range 4-83) and 42% were male. The FDR group comprised 20 parents, 103 siblings and 134 offspring. Among these FDRs, 12 (4.7%) had a previously undiagnosed BAV and 23 (8.9%) had an isolated aortic dilatation. FDRs of the probands with previous AVS (n = 147) had a risk ratio for BAV of 2.25 (95% confidence interval (CI) 0.62-8.10). FDRs of the probands with BAV and repaired or unrepaired aortic dilatation (n = 127) had a risk ratio for BAV of 0.51 (95% CI 0.16-1.66). CONCLUSION: Screening FDRs of patients with isolated BAV resulted in a reasonable yield of 14% new cases of BAV or isolated aortic dilatation. A trend towards an increased risk of BAV in FDRs was observed in the probands with previous AVS, whereas this risk seemed to be diminished in the probands with associated aortic dilatation. This latter finding does not support the restrictive ACC/AHA recommendation
Sensing the heat of tomato products red: the new approach to the objective assessment of their color
The concept of optothermal window (OW) detection was used for the first time to assess the color of several products (juice, purée, paste) derived from thermally processed tomatoes. Unlike traditional techniques that operate either in the reflectance or transmission mode, the method proposed here actually relies on indirect measurement of absorbance in optically opaque and scattering samples. Very good correlation between the magnitude of the OW signal and the color-related parameters [colorimetric index L* and tomato paste index (TPI)] was observed
FONZIE: An optimized pipeline for minisatellite marker discovery and primer design from large sequence data sets
<p>Abstract</p> <p>Background</p> <p>Micro-and minisatellites are among the most powerful genetic markers known to date. They have been used as tools for a large number of applications ranging from gene mapping to phylogenetic studies and isolate typing. However, identifying micro-and minisatellite markers on large sequence data sets is often a laborious process.</p> <p>Results</p> <p>FONZIE was designed to successively 1) perform a search for markers via the external software Tandem Repeat Finder, 2) exclude user-defined specific genomic regions, 3) screen for the size and the percent matches of each relevant marker found by Tandem Repeat Finder, 4) evaluate marker specificity (i.e., occurrence of the marker as a single copy in the genome) using BLAST2.0, 5) design minisatellite primer pairs via the external software Primer3, and 6) check the specificity of each final PCR product by BLAST. A final file returns to users all the results required to amplify markers. A biological validation of the approach was performed using the whole genome sequence of the phytopathogenic fungus <it>Leptosphaeria maculans</it>, showing that more than 90% of the minisatellite primer pairs generated by the pipeline amplified a PCR product, 44.8% of which showed agarose-gel resolvable polymorphism between isolates. Segregation analyses confirmed that the polymorphic minisatellites corresponded to single-locus markers.</p> <p>Conclusion</p> <p>FONZIE is a stand-alone and user-friendly application developed to minimize tedious manual operations, reduce errors, and speed up the search for efficient minisatellite and microsatellite markers departing from whole-genome sequence data. This pipeline facilitates the integration of data and provides a set of specific primer sequences for PCR amplification of single-locus markers. FONZIE is freely downloadable at: <url>http://www.versailles-grignon.inra.fr/bioger/equipes/leptosphaeria_maculans/outils_d_analyses/fonzie</url></p
Evolution of Linked Avirulence Effectors in Leptosphaeria maculans Is Affected by Genomic Environment and Exposure to Resistance Genes in Host Plants
Brassica napus (canola) cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a ‘gene for gene’ manner whereby plant resistance (R) genes are complementary to pathogen avirulence (Avr) genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6) also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP) mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans
Tracing the Origin of the Fungal α1 Domain Places Its Ancestor in the HMG-Box Superfamily: Implication for Fungal Mating-Type Evolution
BACKGROUND: Fungal mating types in self-incompatible Pezizomycotina are specified by one of two alternate sequences occupying the same locus on corresponding chromosomes. One sequence is characterized by a gene encoding an HMG protein, while the hallmark of the other is a gene encoding a protein with an α1 domain showing similarity to the Matα1p protein of Saccharomyces cerevisiae. DNA-binding HMG proteins are ubiquitous and well characterized. In contrast, α1 domain proteins have limited distribution and their evolutionary origin is obscure, precluding a complete understanding of mating-type evolution in Ascomycota. Although much work has focused on the role of the S. cerevisiae Matα1p protein as a transcription factor, it has not yet been placed in any of the large families of sequence-specific DNA-binding proteins. METHODOLOGY/PRINCIPAL FINDINGS: We present sequence comparisons, phylogenetic analyses, and in silico predictions of secondary and tertiary structures, which support our hypothesis that the α1 domain is related to the HMG domain. We have also characterized a new conserved motif in α1 proteins of Pezizomycotina. This motif is immediately adjacent to and downstream of the α1 domain and consists of a core sequence Y-[LMIF]-x(3)-G-[WL] embedded in a larger conserved motif. CONCLUSIONS/SIGNIFICANCE: Our data suggest that extant α1-box genes originated from an ancestral HMG gene, which confirms the current model of mating-type evolution within the fungal kingdom. We propose to incorporate α1 proteins in a new subclass of HMG proteins termed MATα_HMG
- …
