121 research outputs found
Codon swapping of zinc finger nucleases confers expression in primary cells and in vivo from a single lentiviral vector
BACKGROUND: Zinc finger nucleases (ZFNs) are promising tools for genome editing for biotechnological as well as therapeutic purposes. Delivery remains a major issue impeding targeted genome modification. Lentiviral vectors are highly efficient for delivering transgenes into cell lines, primary cells and into organs, such as the liver. However, the reverse transcription of lentiviral vectors leads to recombination of homologous sequences, as found between and within ZFN monomers.
METHODS: We used a codon swapping strategy to both drastically disrupt sequence identity between ZFN monomers and to reduce sequence repeats within a monomer sequence. We constructed lentiviral vectors encoding codon-swapped ZFNs or unmodified ZFNs from a single mRNA transcript. Cell lines, primary hepatocytes and newborn rats were used to evaluate the efficacy of integrative-competent (ICLV) and integrative-deficient (IDLV) lentiviral vectors to deliver ZFNs into target cells.
RESULTS: We reduced total identity between ZFN monomers from 90.9% to 61.4% and showed that a single ICLV allowed efficient expression of functional ZFNs targeting the rat UGT1A1 gene after codon-swapping, leading to much higher ZFN activity in cell lines (up to 7-fold increase compared to unmodified ZFNs and 60% activity in C6 cells), as compared to plasmid transfection or a single ICLV encoding unmodified ZFN monomers. Off-target analysis located several active sites for the 5-finger UGT1A1-ZFNs. Furthermore, we reported for the first time successful ZFN-induced targeted DNA double-strand breaks in primary cells (hepatocytes) and in vivo (liver) after delivery of a single IDLV encoding two ZFNs.
CONCLUSION: These results demonstrate that a codon-swapping approach allowed a single lentiviral vector to efficiently express ZFNs and should stimulate the use of this viral platform for ZFN-mediated genome editing of primary cells, for both ex vivo or in vivo applications
Successful Targeting and Disruption of an Integrated Reporter Lentivirus Using the Engineered Homing Endonuclease Y2 I-AniI
Current antiviral therapy does not cure HIV-infected individuals because the virus establishes lifelong latent infection within long-lived memory T cells as integrated HIV proviral DNA. Here, we report a new therapeutic approach that aims to cure cells of latent HIV infection by rendering latent virus incapable of replication and pathogenesis via targeted cellular mutagenesis of essential viral genes. This is achieved by using a homing endonuclease to introduce DNA double-stranded breaks (dsb) within the integrated proviral DNA, which is followed by triggering of the cellular DNA damage response and error-prone repair. To evaluate this concept, we developed an in vitro culture model of viral latency, consisting of an integrated lentiviral vector with an easily evaluated reporter system to detect targeted mutagenesis events. Using this system, we demonstrate that homing endonucleases can efficiently and selectively target an integrated reporter lentivirus within the cellular genome, leading to mutation in the proviral DNA and loss of reporter gene expression. This new technology offers the possibility of selectively disabling integrated HIV provirus within latently infected cells
Targeting Hepatitis B Virus with Zinc Finger Nucleases
Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy
Proviral HIV-genome-wide and pol-gene specific Zinc Finger Nucleases: Usability for targeted HIV gene therapy
<p>Abstract</p> <p>Background</p> <p>Infection with HIV, which culminates in the establishment of a latent proviral reservoir, presents formidable challenges for ultimate cure. Building on the hypothesis that <it>ex-vivo </it>or even <it>in-vivo </it>abolition <it>or </it>disruption of HIV-gene/genome-action by target mutagenesis or excision can irreversibly abrogate HIV's innate fitness to replicate and survive, we previously identified the isoschizomeric bacteria restriction enzymes (REases) AcsI and ApoI as potent cleavers of the HIV-pol gene (11 and 9 times in HIV-1 and 2, respectively). However, both enzymes, along with others found to cleave across the entire HIV-1 genome, slice (SX) at palindromic sequences that are prevalent within the human genome and thereby pose the risk of host genome toxicity. A long-term goal in the field of R-M enzymatic therapeutics has thus been to generate synthetic restriction endonucleases with longer recognition sites limited in specificity to HIV. We aimed (i) to assemble and construct zinc finger <it>arrays </it>and <it>nucleases </it>(ZFN) with either proviral-HIV-pol gene or proviral-HIV-1 whole-genome specificity respectively, and (ii) to advance a model for pre-clinically testing lentiviral vectors (LV) that deliver and transduce either ZFN genotype.</p> <p>Methods and Results</p> <p><it>First, </it>we computationally generated the consensus sequences of (a) 114 dsDNA-binding zinc finger (Zif) <it>arrays </it>(ZFAs or Zif<sub>HIV-pol</sub>) and (b) two zinc-finger <it>nucleases </it>(ZFNs) which, unlike the AcsI and ApoI homeodomains, possess specificity to >18 base-pair sequences uniquely present within the HIV-pol gene (Zif<sub>HIV-pol</sub>F<sub>N</sub>). Another 15 ZFNs targeting >18 bp sequences within the complete HIV-1 proviral genome were constructed (Zif<sub>HIV-1</sub>F<sub>N</sub>). <it>Second, </it>a model for constructing lentiviral vectors (LVs) that deliver and transduce a diploid copy of either Zif<sub>HIV-pol</sub>F<sub>N </sub>or Zif<sub>HIV-1</sub>F<sub>N </sub>chimeric genes (termed <b>LV- 2xZif</b><sub><b>HIV-pol</b></sub><b>F</b><sub><b>N </b></sub>and <b>LV- 2xZif</b><sub><b>HIV-1</b></sub><b>F</b><sub><b>N, </b></sub>respectively) is proposed. <it>Third, </it>two preclinical models for controlled testing of the safety and efficacy of either of these LVs are described using active HIV-infected TZM-bl reporter cells (HeLa-derived JC53-BL cells) and latent HIV-infected cell lines.</p> <p>Conclusion</p> <p><b>LV-2xZif</b><sub><b>HIV-pol</b></sub><b>F</b><sub><b>N </b></sub>and <b>LV- 2xZif</b><sub><b>HIV-1</b></sub><b>F</b><sub><b>N </b></sub>may offer the <it>ex-vivo </it>or even <it>in-vivo </it>experimental opportunity to halt HIV replication functionally by directly abrogating HIV-pol-gene-action <it>or </it>disrupting/excising over 80% of the proviral HIV DNA from latently infected cells.</p
Validating the concept of mutational signatures with isogenic cell models.
The diversity of somatic mutations in human cancers can be decomposed into individual mutational signatures, patterns of mutagenesis that arise because of DNA damage and DNA repair processes that have occurred in cells as they evolved towards malignancy. Correlations between mutational signatures and environmental exposures, enzymatic activities and genetic defects have been described, but human cancers are not ideal experimental systems-the exposures to different mutational processes in a patient's lifetime are uncontrolled and any relationships observed can only be described as an association. Here, we demonstrate the proof-of-principle that it is possible to recreate cancer mutational signatures in vitro using CRISPR-Cas9-based gene-editing experiments in an isogenic human-cell system. We provide experimental and algorithmic methods to discover mutational signatures generated under highly experimentally-controlled conditions. Our in vitro findings strikingly recapitulate in vivo observations of cancer data, fundamentally validating the concept of (particularly) endogenously-arising mutational signatures
CPP-ZFN: A potential DNA-targeting anti-malarial drug
<p>Abstract</p> <p>Background</p> <p>Multidrug-resistant <it>Plasmodium </it>is of major concern today. Effective vaccines or successful applications of RNAi-based strategies for the treatment of malaria are currently unavailable. An unexplored area in the field of malaria research is the development of DNA-targeting drugs that can specifically interact with parasitic DNA and introduce deleterious changes, leading to loss of vital genome function and parasite death.</p> <p>Presentation of the hypothesis</p> <p>Advances in the development of zinc finger nuclease (ZFN) with engineered DNA recognition domains allow us to design and develop nuclease of high target sequence specificity with a mega recognition site that typically occurs only once in the genome. Moreover, cell-penetrating peptides (CPP) can cross the cell plasma membrane and deliver conjugated protein, nucleic acid, or any other cargo to the cytoplasm, nucleus, or mitochondria. This article proposes that a drug from the combination of the CPP and ZFN systems can effectively enter the intracellular parasite, introduce deleterious changes in its genome, and eliminate the parasite from the infected cells.</p> <p>Testing the hypothesis</p> <p>Availability of a DNA-binding motif for more than 45 triplets and its modular nature, with freedom to change number of fingers in a ZFN, makes development of customized ZFN against diverse target DNA sequence of any gene feasible. Since the <it>Plasmodium </it>genome is highly AT rich, there is considerable sequence site diversity even for the structurally and functionally conserved enzymes between <it>Plasmodium </it>and humans. CPP can be used to deliver ZFN to the intracellular nucleus of the parasite. Signal-peptide-based heterologous protein translocation to <it>Plasmodium</it>-infected RBCs (iRBCs) and different <it>Plasmodium </it>organelles have been achieved. With successful fusion of CPP with mitochondrial- and nuclear-targeting peptides, fusion of CPP with 1 more <it>Plasmodium </it>cell membrane translocation peptide seems achievable.</p> <p>Implications of the hypothesis</p> <p>Targeting of the <it>Plasmodium </it>genome using ZFN has great potential for the development of anti-malarial drugs. It allows the development of a single drug against all malarial infections, including multidrug-resistant strains. Availability of multiple ZFN target sites in a single gene will provide alternative drug target sites to combat the development of resistance in the future.</p
Υπάρχει ζωή για τις βιβλιοθήκες μετά το Internet;
Περιέχει την περίληψηΜέσα στα πλαίσια της Κοινωνίας της Πληροφορίας οι βιβλιοθηκονόμοι διεκδικούν,
άλλοτε πετυχημένα, άλλοτε όχι και τόσο, ένα πιο ενεργό και απαιτητικό ρόλο,
προβάλλοντας το επιχείρημα πώς όσο μεγαλύτερη είναι η παραγωγή πληροφορίας και
γνώσης και η παροχή πληροφόρησης τόσο mo απαιτητική είναι και η διαδικασία που
αναγκάζεται να ακολουθήσει ο χρήστης ώστε να ικανοποιήσει τις ανάγκες του.
Αλλά, η αναγκαιότητα του βιβλιοθηκονόμου (ως επιστήμονα της πληροφόρησης
πλέον), του διαμεσολαβητή, δηλαδή, ανάμεσα στην πληροφορία και στον χρήστη,
δικαιολογεί απαραιτήτως και την αναγκαιότητα για την ίδια τη Βιβλιοθήκη;
Τεκμηριώνεται, δηλαδή, η ύπαρξη αυτού του οργανισμού ως μη κερδοσκοπικού,
πολιτιστικού ιδρύματος που εξυπηρετεί όχι μόνο πληροφοριακές αλλά και
ψυχαγωγικές, εκπαιδευτικές, κοινωνικοοικονομικές ανάγκες των επισκεπτών του;
Και τότε, το έργο του βιβλιοθηκονόμου πώς προδιαγράφεται;
Ποιο το περιεχόμενο και ο τρόπος της διαμεσολάβησης; Πρόκειται για σύνθεση ή
μηχανιστική διάδοση της πληροφορίας;
Αν η Πληροφορία διακινείται, στις μέρες μας κυρίως και πρωτίστως, με ηλεκτρονικά
μέσα, τότε το αυτονόητο της ύπαρξης ενός απτού οικοδομήματος που στεγάζει την
πληροφορία παύει να ισχύει και είτε πρέπει να καταλυθεί, είτε να εφευρεθεί από την
αρχή, προσδίδοντας νέα επίκαιρα χαρακτηριστικά σε ένα αρχαιότατο κατασκεύασμα
Soundscapes: Toward a Sounded Anthropology
A generation of scholars in multiple disciplines has investigated sound in ways that are productive for anthropologists. We introduce the concept of soundscape as a modality for integrating this work into an anthropological approach. We trace its history as a response to the technological mediations and listening practices emergent in modernity and note its absence in the anthropological literature. We then trace the history of technology that gave rise to anthropological recording practices, film sound techniques, and experimental sound art, noting productive interweavings of these threads. After considering ethnographies that explore relationships between sound, personhood, aesthetics, history, and ideology, we question sound's supposed ephemerality as a reason for the discipline's inattention. We conclude with a call for an anthropology that more seriously engages with its own history as a sounded discipline and moves forward in ways that incorporate the social and cultural sounded world more fully. Copyright © 2010 by Annual Reviews. All rights reserved
Recommended from our members
Scintillating Fiber Array Characterization and Alignment for Neutron Imaging using the High Energy X-ray (HEX) Facility
The Neutron Imager diagnostic at the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory (LLNL) will produce high-resolution, gated images of neutron-generating implosions. A similar pinhole imaging experiment (PINEX) diagnostic was recently deployed at the Z facility at Sandia National Laboratories (SNL). Both the SNL and LLNL neutron imagers use similar fiber array scintillators (BCF-99-555). Despite diverse resolution and magnification requirements, both diagnostics put significant onus on the scintillator spatial quality and alignment precision to maintain optimal point spread. Characterization and alignment of the Z-PINEX scintillator and imaging system were done at NSTec/Livermore Operations in 2009, and is currently underway for the NIF Neutron Imager
- …
