778 research outputs found
Long-Term Potentiation: One Kind or Many?
Do neurobiologists aim to discover natural kinds? I address this question in this chapter via a critical analysis of classification practices operative across the 43-year history of research on long-term potentiation (LTP). I argue that this 43-year history supports the idea that the structure of scientific practice surrounding LTP research has remained an obstacle to the discovery of natural kinds
Potentiality in Biology
We take the potentialities that are studied in the biological sciences (e.g., totipotency) to be an important subtype of biological dispositions. The goal of this paper is twofold: first, we want to provide a detailed understanding of what biological dispositions are. We claim that two features are essential for dispositions in biology: the importance of the manifestation process and the diversity of conditions that need to be satisfied for the disposition to be manifest. Second, we demonstrate that the concept of a disposition (or potentiality) is a very useful tool for the analysis of the explanatory practice in the biological sciences. On the one hand it allows an in-depth analysis of the nature and diversity of the conditions under which biological systems display specific behaviors. On the other hand the concept of a disposition may serve a unificatory role in the philosophy of the natural sciences since it captures not only the explanatory practice of biology, but of all natural sciences. Towards the end we will briefly come back to the notion of a potentiality in biology
Bradyzoite pseudokinase 1 is crucial for efficient oral infectivity of the Toxoplasma gondii tissue cyst.
The tissue cyst formed by the bradyzoite stage of Toxoplasma gondii is essential for persistent infection of the host and oral transmission. Bradyzoite pseudokinase 1 (BPK1) is a component of the cyst wall, but nothing has previously been known about its function. Here, we show that immunoprecipitation of BPK1 from in vitro bradyzoite cultures, 4 days postinfection, identifies at least four associating proteins: MAG1, MCP4, GRA8, and GRA9. To determine the role of BPK1, a strain of Toxoplasma was generated with the bpk1 locus deleted. This BPK1 knockout strain (Δbpk1) was investigated in vitro and in vivo. No defect was found in terms of in vitro cyst formation and no difference in pathogenesis or cyst burden 4 weeks postinfection (wpi) was detected after intraperitoneal (i.p.) infection with Δbpk1 tachyzoites, although the Δbpk1 cysts were significantly smaller than parental or BPK1-complemented strains at 8 wpi. Pepsin-acid treatment of 4 wpi in vivo cysts revealed that Δbpk1 parasites are significantly more sensitive to this treatment than the parental and complemented strains. Consistent with this, 4 wpi Δbpk1 cysts showed reduced ability to cause oral infection compared to the parental and complemented strains. Together, these data reveal that BPK1 plays a crucial role in the in vivo development and infectivity of Toxoplasma cysts
Improving Skills When Working with Challenging Behaviors: Get “Sneaky Smart”
As we work to ensure that all children & youth are in a safe/secure environment where they feel special and can learn, it is humbling when we face challenging behaviors. There isn’t a definitive “guidebook” for educators and parents to turn to, thus making us hungry for more training in behavior management, especially proactive strategies. This presentation will help the participants to see that being “sneaky smart” is all about changing adult behavior, being flexible & willing to truly problem solve, and being more skilled at ways to alter the environment & the positive supports that we can put into place. Evidenced-based strategies will be reviewed that the participants can begin to implement immediately with children that fall into all tiers. Through humor of the mistakes that we often make & by noting his colorful NC background, the presenter has compiled & will summarize interventions & strategies from both his experiences as a school psychologist and leader of the PBIS initiative in a large school district in SC, as well as those from many of the national leaders in PBIS. His “sneaky smart” strategies are appropriate for most any classroom or home setting to increase compliance of both groups of students and individual ones. His review of methods for being proactive and how to intervene with an individual that is agitated and resistant have been used widely. A quick, easy and flexible way to document behavior will also be shared, especially for the classroom setting, along with some great resources for parents and educators that are available for pinpointing those behavioral skills that may be lacking
A precise extraction of the induced polarization in the 4He(e,e'p)3H reaction
We measured with unprecedented precision the induced polarization Py in
4He(e,e'p)3H at Q^2 = 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2. The induced polarization
is indicative of reaction-mechanism effects beyond the impulse approximation.
Our results are in agreement with a relativistic distorted-wave impulse
approximation calculation but are over-estimated by a calculation with strong
charge-exchange effects. Our data are used to constrain the strength of the
spin independent charge-exchange term in the latter calculation.Comment: submitted to Physical Review Letter
Quark-Hadron Duality in Neutron (3He) Spin Structure
We present experimental results of the first high-precision test of
quark-hadron duality in the spin-structure function g_1 of the neutron and
He using a polarized 3He target in the four-momentum-transfer-squared range
from 0.7 to 4.0 (GeV/c)^2. Global duality is observed for the spin-structure
function g_1 down to at least Q^2 = 1.8 (GeV/c)^2 in both targets. We have also
formed the photon-nucleon asymmetry A_1 in the resonance region for 3He and
found no strong Q^2-dependence above 2.2 (GeV/c)^2.Comment: 13 pages, 3 figure
Low Q^2 measurements of the proton form factor ratio
We present an updated extraction of the proton electromagnetic form factor
ratio, mu_p G_E/G_M, at low Q^2. The form factors are sensitive to the spatial
distribution of the proton, and precise measurements can be used to constrain
models of the proton. An improved selection of the elastic events and reduced
background contributions yielded a small systematic reduction in the ratio mu_p
G_E/G_M compared to the original analysis.Comment: 12 pages, 5 figures, archival paper for proton form factor extraction
from Jefferson Lab "LEDEX" experimen
JLab Measurement of the He Charge Form Factor at Large Momentum Transfers
The charge form factor of ^4He has been extracted in the range 29 fm
fm from elastic electron scattering, detecting He
nuclei and electrons in coincidence with the High Resolution Spectrometers of
the Hall A Facility of Jefferson Lab. The results are in qualitative agreement
with realistic meson-nucleon theoretical calculations. The data have uncovered
a second diffraction minimum, which was predicted in the range of this
experiment, and rule out conclusively long-standing predictions of dimensional
scaling of high-energy amplitudes using quark counting.Comment: 4 pages, 2 figure
Prediction and Topological Models in Neuroscience
In the last two decades, philosophy of neuroscience has predominantly focused on explanation. Indeed, it has been argued that mechanistic models are the standards of explanatory success in neuroscience over, among other things, topological models. However, explanatory power is only one virtue of a scientific model. Another is its predictive power. Unfortunately, the notion of prediction has received comparatively little attention in the philosophy of neuroscience, in part because predictions seem disconnected from interventions. In contrast, we argue that topological predictions can and do guide interventions in science, both inside and outside of neuroscience. Topological models allow researchers to predict many phenomena, including diseases, treatment outcomes, aging, and cognition, among others. Moreover, we argue that these predictions also offer strategies for useful interventions. Topology-based predictions play this role regardless of whether they do or can receive a mechanistic interpretation. We conclude by making a case for philosophers to focus on prediction in neuroscience in addition to explanation alone
Measurement of the 12C(e,e'p)11B Two-Body Breakup Reaction at High Missing Momentum Values
The five-fold differential cross section for the 12C(e,e'p)11B reaction was
determined over a missing momentum range of 200-400 MeV/c, in a kinematics
regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results
and theoretical models and previous lower missing momentum data is shown. The
theoretical calculations agree well with the data up to a missing momentum
value of 325 MeV/c and then diverge for larger missing momenta. The extracted
distorted momentum distribution is shown to be consistent with previous data
and extends the range of available data up to 400 MeV/c.Comment: 12 pages, 1 table and 3 figures for submission to Journal Physics
- …
