1,925 research outputs found

    Shock heating in the nearby radio galaxy NGC 3801

    Get PDF
    Original article can be found at: http://www.journals.uchicago.edu/ApJ/--Copyright American Astronomical SocietyPeer reviewe

    AGN heating and dissipative processes in galaxy clusters

    Full text link
    Recent X-ray observations reveal growing evidence for heating by active galactic nuclei (AGN) in clusters and groups of galaxies. AGN outflows play a crucial role in explaining the riddle of cooling flows and the entropy problem in clusters. Here we study the effect of AGN on the intra-cluster medium in a cosmological simulation using the adaptive mesh refinement FLASH code. We pay particular attention to the effects of conductivity and viscosity on the dissipation of weak shocks generated by the AGN activity in a realistic galaxy cluster. Our 3D simulations demonstrate that both viscous and conductive dissipation play an important role in distributing the mechanical energy injected by the AGN, offsetting radiative cooling and injecting entropy to the gas. These processes are important even when the transport coefficients are at a level of 10% of the Spitzer value. Provided that both conductivity and viscosity are suppressed by a comparable amount, conductive dissipation is likely to dominate over viscous dissipation. Nevertheless, viscous effects may still affect the dynamics of the gas and contribute a significant amount of dissipation compared to radiative cooling. We also present synthetic Chandra observations. We show that the simulated buoyant bubbles inflated by the AGN, and weak shocks associated with them, are detectable with the Chandra observatory.Comment: accepted to ApJ, minor change

    Multiple density discontinuities in the merging galaxy cluster CIZA J2242.8+5301

    Full text link
    CIZA J2242.8+5301, a merging galaxy cluster at z=0.19, hosts a double-relic system and a faint radio halo. Radio observations at frequencies ranging from a few MHz to several GHz have shown that the radio spectral index at the outer edge of the N relic corresponds to a shock of Mach number 4.6+/-1.1, under the assumptions of diffusive shock acceleration of thermal particles in the test particle regime. Here, we present results from new Chandra observations of the cluster. The Chandra surface brightness profile across the N relic only hints to a surface brightness discontinuity (<2-sigma detection). Nevertheless, our reanalysis of archival Suzaku data indicates a temperature discontinuity across the relic that is consistent with a Mach number of 2.5+/-0.5, in agreement with previously published results. This confirms that the Mach number at the shock traced by the N relic is much weaker than predicted from the radio. Puzzlingly, in the Chandra data we also identify additional inner small density discontinuities both on and off the merger axis. Temperature measurements on both sides of the discontinuities do not allow us to undoubtedly determine their nature, although a shock front interpretation seems more likely. We speculate that if the inner density discontinuities are indeed shock fronts, then they are the consequence of violent relaxation of the dark matter cores of the clusters involved in the merger.Comment: 11 pages, 11 figures. Accepted for publication in MNRA

    Challenges to our understanding of radio relics: X-ray observations of the Toothbrush cluster

    Full text link
    The cluster 1RXS J0603.3+4214 is a merging galaxy cluster that hosts three radio relics and a giant radio halo. The northern relic, the Toothbrush, is 1.9-Mpc long and has an unusual linear morphology. According to simple diffusive shock acceleration theory, its radio spectral index indicates a Mach number of 3.3-4.6. Here, we present results from a deep XMM-Newton observation of the cluster. We observe two distinct cluster cores that have survived the merger. The presence of three shocks at or near the locations of the radio relics is confirmed by density and temperature discontinuities. However, the observation poses several puzzles that challenge our understanding of radio relics: (i) at the Toothbrush, the shock Mach number is not larger than 2, in apparent conflict with the shock strength predicted from the radio spectrum; (ii) at the Toothbrush, the shock front is, in part, spatially offset from the radio emission; (iii) at the eastern relic, we detect a temperature jump corresponding to a Mach number of approximately 2.5, but there is no associated surface brightness discontinuity. We discuss possible explanations for these findings.Comment: 14 pages, 15 figures; submitted to MNRA

    Limits on the AGN activities in X-ray underluminous galaxy groups

    Get PDF
    We have observed four X-ray underluminous groups of galaxies using the Giant Meterwave RadioTelescope. The groups NGC 524, 720, 3607, and 4697 are underluminous in relation to the extrapolation of the Lx - T relation from rich clusters and do not show any evidence of current AGN activities that can account for such a departure. The GMRT observations carried out at low frequencies (235 and 610 MHz) were aimed at detecting low surface brightness, steep-spectrum sources indicative of past AGN activities in these groups. No such radio emissions were detected in any of these four groups. The corresponding upper limits on the total energy in relativistic particles is about 3 X 1057^{57} erg. This value is more than a factor of 100 less than that required to account for the decreased X-ray luminosities (or, enhanced entropies) of these four groups in the AGN-heating scenario. Alternatively, the AGN activity must have ceased about 4 Gyr ago, allowing the relativistic particles to diffuse out to such a large extent (about 250 kpc) that their radio emission could have been undetected by the current observations. If the latter scenario is correct, the ICM was pre-heated before the assembly of galaxy clusters.Comment: 10 pages, 3 figures, accepted for publication in ApJ Letter

    Shocks, Seyferts and the SNR connection: a Chandra observation of the Circinus galaxy

    Get PDF
    We analyse new Chandra observations of the nearest (D=4 Mpc) Seyfert 2 active galaxy, Circinus, and match them to pre-existing radio, infrared and optical data to study the kpc-scale emission. The proximity of Circinus allows us to observe in striking detail the structure of the radio lobes, revealing for the first time edge-brightened emission both in X-rays and radio. After considering various other possible scenarios, we show that this extended emission in Circinus is most likely caused by a jet-driven outflow, which is driving shells of strongly shocked gas into the halo of the host galaxy. In this context, we estimate Mach numbers M=2.7-3.6 and M=2.8-5.3 for the W and E shells respectively. We derive temperatures of 0.74 (+0.06, -0.05) keV and 0.8-1.8 keV for the W and E shells, and an expansion velocity of ~900-950 km/s. We estimate that the total energy (thermal and kinetic) involved in creating both shells is ~2x10^55 erg, and their age is ~10^6 years. Comparing these results with those we previously obtained for Centaurus A, NGC 3801 and Mrk 6, we show that these parameters scale approximately with the radio power of the parent AGN. The spatial coincidence between the X-ray and edge-brightened radio emission in Circinus resembles the morphology of some SNR shocks. This parallel has been expected for AGN, but has never been observed before. We investigate what underlying mechanisms both types of systems may have in common, arguing that, in Circinus, the edge-brightening in the shells may be accounted for by a B field enhancement caused by shock compression, but do not preclude some local particle acceleration. These results can be extrapolated to other low-power systems, particularly those with late type hosts.Comment: 13 pages, 9 figures, and 5 tables. Accepted for publication in Ap

    AGN heating, thermal conduction and Sunyaev-Zeldovich effect in galaxy groups and clusters

    Full text link
    (abridged) We investigate in detail the role of active galactic nuclei on the physical state of the gas in galaxy groups and clusters, and the implications for anisotropy in the CMB from Sunyaev-Zeldovich effect. We include the effect of thermal conduction, and find that the resulting profiles of temperature and entropy are consistent with observations. Unlike previously proposed models, our model predicts that isentropic cores are not an inevitable consequence of preheating. The model also reproduces the observational trend for the density profiles to flatten in lower mass systems. We deduce the energy E_agn required to explain the entropy observations as a function of mass of groups and clusters M_cl and show that E_agn is proportional to M_cl^alpha with alpha~1.5. We demonstrate that the entropy measurements, in conjunction with our model, can be translated into constraints on the cluster--black hole mass relation. The inferred relation is nonlinear and has the form M_bh\propto M_cl^alpha. This scaling is an analog and extension of a similar relation between the black hole mass and the galactic halo mass that holds on smaller scales. We show that the central decrement of the CMB temperature is reduced due to the enhanced entropy of the ICM, and that the decrement predicted from the plausible range of energy input from the AGN is consistent with available data of SZ decrement. We show that AGN heating, combined with the observational constraints on entropy, leads to suppression of higher multipole moments in the angular power spectrum and we find that this effect is stronger than previously thought.Comment: accepted for publication in The Astrophysical Journa

    Ordered magnetic fields around radio galaxies: evidence for interaction with the environment

    Full text link
    We present detailed imaging of Faraday rotation and depolarization for the radio galaxies 0206+35, 3C 270, 3C 353 and M 84, based on Very Large Array observations at multiple frequencies in the range 1365 to 8440 MHz. This work suggests a more complex picture of the magneto-ionic environments of radio galaxies than was apparent from earlier work. All of the sources show spectacular banded rotation measure (RM) structures with contours of constant RM perpendicular to the major axes of their radio lobes. We give a comprehensive description of the banded RM phenomenon and present an initial attempt to interpret it as a consequence of interactions between the sources and their surroundings. We show that the material responsible for the Faraday rotation is in front of the radio emission and that the bands are likely to be caused by magnetized plasma which has been compressed by the expanding radio lobes. A two-dimensional magnetic structure in which the field lines are a family of ellipses draped around the leading edge of the lobe can produce RM bands in the correct orientation for any source orientation. We also report the first detections of rims of high depolarization at the edges of the inner radio lobes of M 84 and 3C 270. These are spatially coincident with shells of enhanced X-ray surface brightness, in which both the field strength and the thermal gas density are likely to be increased by compression.Comment: 21 pages, 15 figures, accepted for publication in MNRAS. Full resolution paper available at http://www.ira.inaf.it/~guidetti/bands/ Subjects: Astrophysics (astro-ph
    corecore