16,390 research outputs found
Interplay Between Yu-Shiba-Rusinov States and Multiple Andreev Reflections
Motivated by recent scanning tunneling microscopy experiments on single
magnetic impurities on superconducting surfaces, we present here a
comprehensive theoretical study of the interplay between Yu-Shiba-Rusinov bound
states and (multiple) Andreev reflections. Our theory is based on a combination
of an Anderson model with broken spin degeneracy and nonequilibrium Green's
function techniques that allows us to describe the electronic transport through
a magnetic impurity coupled to superconducting leads for arbitrary junction
transparency. Using this combination we are able to elucidate the different
tunneling processes that give a significant contribution to the subgap
transport. In particular, we predict the occurrence of a large variety of
Andreev reflections mediated by Yu-Shiba-Rusinov bound states that clearly
differ from the standard Andreev processes in non-magnetic systems. Moreover,
we provide concrete guidelines on how to experimentally identify the subgap
features originating from these tunneling events. Overall, our work provides
new insight into the role of the spin degree of freedom in Andreev transport
physics.Comment: 15 pages, 10 figure
Field enhancement in subnanometer metallic gaps
Motivated by recent experiments [Ward et al., Nature Nanotech. 5, 732
(2010)], we present here a theoretical analysis of the optical response of
sharp gold electrodes separated by a subnanometer gap. In particular, we have
used classical finite difference time domain simulations to investigate the
electric field distribution in these nanojunctions upon illumination. Our
results show a strong confinement of the field within the gap region, resulting
in a large enhancement compared to the incident field. Enhancement factors
exceeding 1000 are found for interelectrode distances on the order of a few
angstroms, which are fully compatible with the experimental findings. Such huge
enhancements originate from the coupling of the incident light to the
evanescent field of hybrid plasmons involving charge density oscillations in
both electrodes.Comment: 4 pages, 3 figures, to appear in Physical Review
Bright and dark breathers in Fermi-Pasta-Ulam lattices
In this paper we study the existence and linear stability of bright and dark
breathers in one-dimensional FPU lattices. On the one hand, we test the range
of validity of a recent breathers existence proof [G. James, {\em C. R. Acad.
Sci. Paris}, 332, Ser. 1, pp. 581 (2001)] using numerical computations.
Approximate analytical expressions for small amplitude bright and dark
breathers are found to fit very well exact numerical solutions even far from
the top of the phonon band. On the other hand, we study numerically large
amplitude breathers non predicted in the above cited reference. In particular,
for a class of asymmetric FPU potentials we find an energy threshold for the
existence of exact discrete breathers, which is a relatively unexplored
phenomenon in one-dimensional lattices. Bright and dark breathers superposed on
a uniformly stressed static configuration are also investigated.Comment: 11 pages, 16 figure
Breathers in FPU systems, near and far from the phonon band
There exists a recent mathematical proof on the existence of small amplitude
breathers in FPU systems near the phonon band, which includes a prediction of
their amplitude and width. In this work we obtain numerically these breathers,
and calculate the range of validity of the predictions, which extends
relatively far from the phonon band. There exist also large amplitude breathers
with the same frequency, with the consequence that there is an energy gap for
breather creation in these systems.Comment: 3 pages, 2 figures, proceeding of the conference on Localization and
to and Energy Transfer in Nonlinear Systems, June 17-21, 2002, San Lorenzo de
El Escorial, Madrid, Spain. To be published by World Scientifi
Quantum Interference and Decoherence in Single-Molecule Junctions: How Vibrations Induce Electrical Current
Quantum interference effects and decoherence mechanisms in single-molecule
junctions are analyzed employing a nonequilibrium Green's function approach.
Electrons tunneling through quasi-degenerate states of a nanoscale molecular
junction exhibit interference effects. We show that electronic-vibrational
coupling, inherent to any molecular junction, strongly quenches such
interference effects. As a result, the electrical current can be significantly
larger than without electronic-vibrational coupling. The analysis reveals that
the quenching of quantum interference is particularly pronounced if the
junction is vibrationally highly excited, e.g. due to current-induced
nonequilibrium effects in the resonant transport regime.Comment: 11 pages, 4 figure
Breather trapping and breather transmission in a DNA model with an interface
We study the dynamics of moving discrete breathers in an interfaced piecewise
DNA molecule.
This is a DNA chain in which all the base pairs are identical and there
exists an interface such that the base pairs dipole moments at each side are
oriented in opposite directions.
The Hamiltonian of the Peyrard--Bishop model is augmented with a term that
includes the dipole--dipole coupling between base pairs. Numerical simulations
show the existence of two dynamical regimes. If the translational kinetic
energy of a moving breather launched towards the interface is below a critical
value, it is trapped in a region around the interface collecting vibrational
energy. For an energy larger than the critical value, the breather is
transmitted and continues travelling along the double strand with lower
velocity. Reflection phenomena never occur.
The same study has been carried out when a single dipole is oriented in
opposite direction to the other ones.
When moving breathers collide with the single inverted dipole, the same
effects appear. These results emphasize the importance of this simple type of
local inhomogeneity as it creates a mechanism for the trapping of energy.
Finally, the simulations show that, under favorable conditions, several
launched moving breathers can be trapped successively at the interface region
producing an accumulation of vibrational energy. Moreover, an additional
colliding moving breather can produce a saturation of energy and a moving
breather with all the accumulated energy is transmitted to the chain.Comment: 15 pages, 11 figure
Nucleation of breathers via stochastic resonance in nonlinear lattices
By applying a staggered driving force in a prototypical discrete model with a
quartic nonlinearity, we demonstrate the spontaneous formation and destruction
of discrete breathers with a selected frequency due to thermal fluctuations.
The phenomenon exhibits the striking features of stochastic resonance (SR): a
nonmonotonic behavior as noise is increased and breather generation under
subthreshold conditions. The corresponding peak is associated with a matching
between the external driving frequency and the breather frequency at the
average energy given by ambient temperature.Comment: Added references, figure 5 modified to include new dat
Collective Coordinates Theory for Discrete Soliton Ratchets in the sine-Gordon Model
A collective coordinate theory is develop for soliton ratchets in the damped
discrete sine-Gordon model driven by a biharmonic force. An ansatz with two
collective coordinates, namely the center and the width of the soliton, is
assumed as an approximated solution of the discrete non-linear equation. The
evolution of these two collective coordinates, obtained by means of the
Generalized Travelling Wave Method, explains the mechanism underlying the
soliton ratchet and captures qualitatively all the main features of this
phenomenon. The theory accounts for the existence of a non-zero depinning
threshold, the non-sinusoidal behaviour of the average velocity as a function
of the difference phase between the harmonics of the driver, the non-monotonic
dependence of the average velocity on the damping and the existence of
non-transporting regimes beyond the depinning threshold. In particular it
provides a good description of the intriguing and complex pattern of subspaces
corresponding to different dynamical regimes in parameter space
- …
