130 research outputs found

    A novel application of motion analysis for detecting stress responses in embryos at different stages of development.

    Get PDF
    Motion analysis is one of the tools available to biologists to extract biologically relevant information from image datasets and has been applied to a diverse range of organisms. The application of motion analysis during early development presents a challenge, as embryos often exhibit complex, subtle and diverse movement patterns. A method of motion analysis able to holistically quantify complex embryonic movements could be a powerful tool for fields such as toxicology and developmental biology to investigate whole organism stress responses. Here we assessed whether motion analysis could be used to distinguish the effects of stressors on three early developmental stages of each of three species: (i) the zebrafish Danio rerio (stages 19 h, 21.5 h and 33 h exposed to 1.5% ethanol and a salinity of 5); (ii) the African clawed toad Xenopus laevis (stages 24, 32 and 34 exposed to a salinity of 20); and iii) the pond snail Radix balthica (stages E3, E4, E6, E9 and E11 exposed to salinities of 5, 10 and 15). Image sequences were analysed using Sparse Optic Flow and the resultant frame-to-frame motion parameters were analysed using Discrete Fourier Transform to quantify the distribution of energy at different frequencies. This spectral frequency dataset was then used to construct a Bray-Curtis similarity matrix and differences in movement patterns between embryos in this matrix were tested for using ANOSIM

    One Year Sustainability of Risk Factor Change from a 9-Week Workplace Intervention

    Get PDF
    We examined the effect of a 9-week diet and physical activity intervention provided in the workplace by a group education session where personal dietary and physical activity goals were proposed. Measurements of anthropometry, fasting blood lipids, glucose and insulin, assays for antioxidant activity (AOA) and questionnaires were completed at 0, 3, 6, 9, and 12 weeks in 50 healthy workers (50% male, mean age 46y). Followup measurements in 39 (56% male) were possible at 52 weeks. At week 3 a group dietary and physical activity “motivational seminar” was held. At week 6, half the group were supplied daily kiwifruit for 3 weeks with cross over at week 9 until week 12. Compared to baseline, lipid, glucose, insulin and AOA measurements were improved at 12 and 52 weeks. Body measurements did not change. Group diet and physical activity advice reinforced over 9 weeks is associated with a sustained improvement in cardiovascular risk factors at 52 weeks

    Quantifying the Dynamics of Coupled Networks of Switches and Oscillators

    Get PDF
    Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive the system's evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs. Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems

    The impact of inflammation on bone mass in children

    Get PDF
    Bone is a dynamic tissue. Skeletal bone integrity is maintained through bone modeling and remodeling. The mechanisms underlying this bone mass regulation are complex and interrelated. An imbalance in the regulation of bone remodeling through bone resorption and bone formation results in bone loss. Chronic inflammation influences bone mass regulation. Inflammation-related bone disorders share many common mechanisms of bone loss. These mechanisms are ultimately mediated through the uncoupling of bone remodeling. Cachexia, physical inactivity, pro-inflammatory cytokines, as well as iatrogenic factors related to effects of immunosuppression are some of the common mechanisms. Recently, cytokine signaling through the central nervous system has been investigated for its potential role in bone mass dysregulation in inflammatory conditions. Growing research on the molecular mechanisms involved in inflammation-induced bone loss may lead to more selective therapeutic targeting of these pathological signaling pathways

    Quantitative determination and localization of cathepsin D and its inhibitors.

    Full text link

    Verhaltensmodelle beim Tier zur Erfassung einer anxiolytischen Wirkung

    Full text link
    corecore