6 research outputs found

    Static Solitons of the Sine-Gordon Equation and Equilibrium Vortex Structure in Josephson Junctions

    Full text link
    The problem of vortex structure in a single Josephson junction in an external magnetic field, in the absence of transport currents, is reconsidered from a new mathematical point of view. In particular, we derive a complete set of exact analytical solutions representing all the stationary points (minima and saddle-points) of the relevant Gibbs free-energy functional. The type of these solutions is determined by explicit evaluation of the second variation of the Gibbs free-energy functional. The stable (physical) solutions minimizing the Gibbs free-energy functional form an infinite set and are labelled by a topological number Nv=0,1,2,... Mathematically, they can be interpreted as nontrivial ''vacuum'' (Nv=0) and static topological solitons (Nv=1,2,...) of the sine-Gordon equation for the phase difference in a finite spatial interval: solutions of this kind were not considered in previous literature. Physically, they represent the Meissner state (Nv=0) and Josephson vortices (Nv=1,2,...). Major properties of the new physical solutions are thoroughly discussed. An exact, closed-form analytical expression for the Gibbs free energy is derived and analyzed numerically. Unstable (saddle-point) solutions are also classified and discussed.Comment: 17 pages, 4 Postscript figure

    Exact analytical solution of the problem of current-carrying states of the Josephson junction in external magnetic fields

    Full text link
    The classical problem of the Josephson junction of arbitrary length W in the presence of externally applied magnetic fields (H) and transport currents (J) is reconsidered from the point of view of stability theory. In particular, we derive the complete infinite set of exact analytical solutions for the phase difference that describe the current-carrying states of the junction with arbitrary W and an arbitrary mode of the injection of J. These solutions are parameterized by two natural parameters: the constants of integration. The boundaries of their stability regions in the parametric plane are determined by a corresponding infinite set of exact functional equations. Being mapped to the physical plane (H,J), these boundaries yield the dependence of the critical transport current Jc on H. Contrary to a wide-spread belief, the exact analytical dependence Jc=Jc(H) proves to be multivalued even for arbitrarily small W. What is more, the exact solution reveals the existence of unquantized Josephson vortices carrying fractional flux and located near one of the junction edges, provided that J is sufficiently close to Jc for certain finite values of H. This conclusion (as well as other exact analytical results) is illustrated by a graphical analysis of typical cases.Comment: 21 pages, 9 figures, to be published in Phys. Rev.

    Analysis of Stress-Strain State of Multi-wave Shell on Parabolic Trapezoidal Plan

    No full text
    corecore