109 research outputs found
Magnetic Vortex Core Reversal by Excitation of Spin Waves
Micron-sized magnetic platelets in the flux closed vortex state are
characterized by an in-plane curling magnetization and a nanometer-sized
perpendicularly magnetized vortex core. Having the simplest non-trivial
configuration, these objects are of general interest to micromagnetics and may
offer new routes for spintronics applications. Essential progress in the
understanding of nonlinear vortex dynamics was achieved when low-field core
toggling by excitation of the gyrotropic eigenmode at sub-GHz frequencies was
established. At frequencies more than an order of magnitude higher vortex state
structures possess spin wave eigenmodes arising from the magneto-static
interaction. Here we demonstrate experimentally that the unidirectional vortex
core reversal process also occurs when such azimuthal modes are excited. These
results are confirmed by micromagnetic simulations which clearly show the
selection rules for this novel reversal mechanism. Our analysis reveals that
for spin wave excitation the concept of a critical velocity as the switching
condition has to be modified.Comment: Minor corrections and polishing of previous versio
Resonant amplification of vortex-core oscillations by coherent magnetic-field pulses
Vortex structures in soft magnetic nanodisks are highly attractive due to their scientific beauty and potential technological applications. Here, we experimentally demonstrated the resonant amplification of vortex oscillations by application of simple coherent field pulses tuned to optimal width and time intervals. In order to investigate vortex excitations on the sub-ns time scale, we employed state-of-the-art time-resolved full-field soft X-ray microscopy of 70 ps temporal and 25 nm lateral resolution. We found that, due to the resonant enhancement of the vortex gyration motion, the signal input power can be significantly reduced to similar to 1 Oe in field strength, while increasing signal gains, by increasing the number of the optimal field pulses. We identified the origin of this behavior as the forced resonant amplification of vortex gyration. This work represents an important milestone towards the potential implementation of vortex oscillations in future magnetic vortex devices.open4
A new epigean false scorpion: Roncus sumadijae n. sp. (Neobisiidae, Pseudoscorpiones) from the Balkan Peninsula (Western Serbia)
A new endemic epigean species from the village of Adžina Livada, nr. Kragujevac, Mts. Gledićke Planine, western Serbia, is erected, described and thoroughly illustrated. Its main morphometric characters and important diagnostic features are analyzed and compared to the two closest congeners, Roncus ivanjicae B. Ćurčić, and R. golijae B. Ćurčić from western Serbia, respectively
Optimal control of vortex core polarity by resonant microwave pulses
In a vortex-state magnetic nano-disk, the static magnetization is curling in
the plane, except in the core region where it is pointing out-of-plane, either
up or down leading to two possible stable states of opposite core polarity p.
Dynamical reversal of p by large amplitude motion of the vortex core has
recently been demonstrated experimentally,raising fundamental interest for
potential application in magnetic storage devices. Here we demonstrate coherent
control of p by single and double microwave pulse sequences, taking advantage
of the resonant vortex dynamics in a perpendicular bias magnetic field.
Optimization of the microwave pulse duration required to switch p allows to
experimentally infer the characteristic decay time of the vortex core in the
large oscillation regime. It is found to be more than twice shorter than in the
small oscillation regime, raising the fundamental question of the non-linear
behaviour of magnetic dissipation
X-ray imaging of the dynamic magnetic vortex core deformation
Magnetic platelets with a vortex configuration are attracting considerable
attention. The discovery that excitation with small in-plane magnetic fields or
spin polarised currents can switch the polarisation of the vortex core did not
only open the possibility of using such systems in magnetic memories, but also
initiated the fundamental investigation of the core switching mechanism itself.
Micromagnetic models predict that the switching is mediated by a
vortex-antivortex pair, nucleated in a dynamically induced vortex core
deformation. In the same theoretical framework, a critical core velocity is
predicted, above which switching occurs. Although these models are extensively
studied and generally accepted, experimental support has been lacking until
now. In this work, we have used high-resolution time-resolved X-ray microscopy
to study the detailed dynamics in vortex structures. We could reveal the
dynamic vortex core deformation preceding the core switching. Also, the
threshold velocity could be measured, giving quantitative comparison with
micromagnetic models
Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems
Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic fields, spin-polarized currents or spin waves. Here we demonstrate local control of the vortex core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its polarization on crossing a maze domain boundary. This reversal is mediated by a pair of magnetic singularities, known as Bloch points, and leads to the transient formation of a three-dimensional magnetization structure: a Bloch core. The interaction between vortex and domain wall thus acts as a nanoscale switch for the vortex core polarization
A autoeficácia dos professores para a implementação de práticas inclusivas: contributos para uma reflexão sobre a inclusão educativa
Chthonius (Ephippiochthonius) lagadini n.sp. (Chthoniidae, Pseudoscorpiones), a new endemic epigean pseudoscorpion from Macedonia
A virosomal malaria Peptide vaccine elicits a long-lasting sporozoite-inhibitory antibody response in a phase 1a clinical trial
Contains fulltext :
52304.pdf (publisher's version ) (Open Access)OBJECTIVES: Peptides delivered on the surface of influenza virosomes have been shown to induce solid humoral immune responses in experimental animals. High titers of peptide-specific antibodies were also induced in a phase 1a clinical trial in volunteers immunized with virosomal formulations of two peptides derived from the circumsporozoite protein (CSP) and the apical membrane antigen 1 (AMA-1) of Plasmodium falciparum. The main objective of this study was to perform a detailed immunological and functional analysis of the CSP-specific antibodies elicited in this phase 1a trial. METHODOLOGY/PRINCIPAL FINDINGS: 46 healthy malaria-naive adults were immunized with virosomal formulations of two peptide-phosphatidylethanolamine conjugates, one derived from the NANP repeat region of P. falciparum CSP (designated UK-39) the other from P. falciparum AMA-1 (designated AMA49-C1). The two antigens were delivered in two different concentrations, alone and in combination. One group was immunized with empty virosomes as control. In this report we show a detailed analysis of the antibody response against UK-39. Three vaccinations with a 10 microg dose of UK-39 induced high titers of sporozoite-binding antibodies in all volunteers. This IgG response was affinity maturated and long-lived. Co-administration of UK-39 and AMA49-C1 loaded virosomes did not interfere with the immunogenicity of UK-39. Purified total IgG from UK-39 immunized volunteers inhibited sporozoite migration and invasion of hepatocytes in vitro. Sporozoite inhibition closely correlated with titers measured in immunogenicity assays. CONCLUSIONS: Virosomal delivery of a short, conformationally constrained peptide derived from P. falciparum CSP induced a long-lived parasite-inhibitory antibody response in humans. Combination with a second virosomally-formulated peptide derived from P. falciparum AMA-1 did not interfere with the immunogenicity of either peptide, demonstrating the potential of influenza virosomes as a versatile, human-compatible antigen delivery platform for the development of multivalent subunit vaccines. TRIAL REGISTRATION: ClinicalTrials.gov NCT00400101
- …
