1,325 research outputs found

    Practical, reliable and inexpensive assay of lycopene in tomato products based on the combined use of light emitting diode (LED) and the optothermal window

    Get PDF
    Light emitting diode (LED) combined with the concept of optothermal window (OW) is proposed as a new approach (LED-OW) to detect lycopene in a wide range of tomato-based products (tomato juice, tomato ketchup, tomato passata and tomato puree). Phytonutrient lycopene is a dominant antioxidant in these products while beta-carotene is present in significantly lower quantities. Therefore for all practical reasons the interfering effect of beta-carotene at 502 nm analytical wavelength can be neglected. The LED-OW method is low-cost and simple, yet accurate and precise. The major attributes of the new method are its rapid speed of response and the fact that no preparation whatsoever of the sample is needed before the analysis. The lycopene found in tomato products studied here varies from 8 mg/100 g to 60 mg/100 g fresh product. Results obtained by LED-OW method were compared to the outcome of conventional, time consuming spectrophotometric methods and the correlation was very good (R = 0.98). Precision of the LED-OW instrumental setup ranged from 0.5 to 7.4%; the RSD achieved for lycopene-richest samples (= 40 mg/100 g) did not exceed 1.7%. Repeatability of analysis by LED-OW was found to vary between 0.7 and 7.1%

    Automated supervised classification of variable stars I. Methodology

    Get PDF
    The fast classification of new variable stars is an important step in making them available for further research. Selection of science targets from large databases is much more efficient if they have been classified first. Defining the classes in terms of physical parameters is also important to get an unbiased statistical view on the variability mechanisms and the borders of instability strips. Our goal is twofold: provide an overview of the stellar variability classes that are presently known, in terms of some relevant stellar parameters; use the class descriptions obtained as the basis for an automated `supervised classification' of large databases. Such automated classification will compare and assign new objects to a set of pre-defined variability training classes. For every variability class, a literature search was performed to find as many well-known member stars as possible, or a considerable subset if too many were present. Next, we searched on-line and private databases for their light curves in the visible band and performed period analysis and harmonic fitting. The derived light curve parameters are used to describe the classes and define the training classifiers. We compared the performance of different classifiers in terms of percentage of correct identification, of confusion among classes and of computation time. We describe how well the classes can be separated using the proposed set of parameters and how future improvements can be made, based on new large databases such as the light curves to be assembled by the CoRoT and Kepler space missions.Comment: This paper has been accepted for publication in Astronomy and Astrophysics (reference AA/2007/7638) Number of pages: 27 Number of figures: 1

    Eliminating the low-mass axigluon window

    Get PDF
    Using recent collider data, especially on the hadronic width the Z0, we exclude axigluons in the currently allowed low-mass window, namely axigluons in the mass range 50 GeV < M_A < 120 GeV. Combined with hadron collider data from di-jet production, axigluons with masses below roughly 1 TeV are now completely excluded.Comment: 8 pages, no figures, LaTe

    Energy Conservation Constraints on Multiplicity Correlations in QCD Jets

    Get PDF
    We compute analytically the effects of energy conservation on the self-similar structure of parton correlations in QCD jets. The calculations are performed both in the constant and running coupling cases. It is shown that the corrections are phenomenologically sizeable. On a theoretical ground, energy conservation constraints preserve the scaling properties of correlations in QCD jets beyond the leading log approximation.Comment: 11 pages, latex, 5 figures, .tar.gz version avaliable on ftp://www.inln.unice.fr

    Dijet resonances, widths and all that

    Get PDF
    The search for heavy resonances in the dijet channel is part of the on-going physics programme, both at the Tevatron and at the LHC. Lower limits have been placed on the masses of dijet resonances predicted in a wide variety of models. However, across experiments, the search strategy assumes that the effect of the new particles is well-approximated by on-shell production and subsequent decay into a pair of jets. We examine the impact of off-shell effects on such searches, particularly for strongly interacting resonances.Comment: Version published in JHE

    Analysis of MERCATOR data Part I: variable B stars

    Get PDF
    We re-classified 31 variable B stars which were observed more than 50 times in the Geneva photometric system with the P7 photometer attached to the MERCATOR telescope (La Palma) during its first 3 years of scientific observations. HD89688 is a possible beta Cephei/slowly pulsating B star hybrid and the main mode of the COROT target HD180642 shows non-linear effects. The Maia candidates are re-classified as either ellipsoidal variables or spotted stars. Although the mode identification is still ongoing, all the well-identified modes so far have a degree l = 0, 1 or 2.Comment: 4 pages, 3 figures. To appear in: Proceedings of JENAM 2005 'Distant worlds', Communications in Asteroseismolog

    Lepton flavor violation at linear collider experiments in supersymmetric grand unified theories

    Get PDF
    Lepton flavor violation at linear collider experiments is discussed. We show that detectable lepton flavor violation could occur through scalar lepton pair production and decay in the supersymmetric SU(5) grand unified theory in spite of the stringent present experimental constraints by rare process searches. Possible cross sections about 40fb for an e+e- collider and 280fb for an e-e- collider are illustrated.Comment: 12 pages, including 3 figures, REVTeX, eps

    Fourier Analysis of Gapped Time Series: Improved Estimates of Solar and Stellar Oscillation Parameters

    Full text link
    Quantitative helio- and asteroseismology require very precise measurements of the frequencies, amplitudes, and lifetimes of the global modes of stellar oscillation. It is common knowledge that the precision of these measurements depends on the total length (T), quality, and completeness of the observations. Except in a few simple cases, the effect of gaps in the data on measurement precision is poorly understood, in particular in Fourier space where the convolution of the observable with the observation window introduces correlations between different frequencies. Here we describe and implement a rather general method to retrieve maximum likelihood estimates of the oscillation parameters, taking into account the proper statistics of the observations. Our fitting method applies in complex Fourier space and exploits the phase information. We consider both solar-like stochastic oscillations and long-lived harmonic oscillations, plus random noise. Using numerical simulations, we demonstrate the existence of cases for which our improved fitting method is less biased and has a greater precision than when the frequency correlations are ignored. This is especially true of low signal-to-noise solar-like oscillations. For example, we discuss a case where the precision on the mode frequency estimate is increased by a factor of five, for a duty cycle of 15%. In the case of long-lived sinusoidal oscillations, a proper treatment of the frequency correlations does not provide any significant improvement; nevertheless we confirm that the mode frequency can be measured from gapped data at a much better precision than the 1/T Rayleigh resolution.Comment: Accepted for publication in Solar Physics Topical Issue "Helioseismology, Asteroseismology, and MHD Connections

    Charginos and Neutralinos Production at 3-3-1 Supersymmetric Model in eee^-e^- Scattering

    Get PDF
    The goal of this article is to derive the Feynman rules involving charginos, neutralinos, double charged gauge bosons and sleptons in a 3-3-1 supersymmetric model. Using these Feynman rules we will calculate the production of a double charged chargino with a neutralino and also the production of a pair of single charged charginos, both in an electron- electron eee^-e^- process.Comment: 18 pages, 8 figures, 2 table

    Interface electronic states and boundary conditions for envelope functions

    Full text link
    The envelope-function method with generalized boundary conditions is applied to the description of localized and resonant interface states. A complete set of phenomenological conditions which restrict the form of connection rules for envelope functions is derived using the Hermiticity and symmetry requirements. Empirical coefficients in the connection rules play role of material parameters which characterize an internal structure of every particular heterointerface. As an illustration we present the derivation of the most general connection rules for the one-band effective mass and 4-band Kane models. The conditions for the existence of Tamm-like localized interface states are established. It is shown that a nontrivial form of the connection rules can also result in the formation of resonant states. The most transparent manifestation of such states is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.
    corecore