1,325 research outputs found
Practical, reliable and inexpensive assay of lycopene in tomato products based on the combined use of light emitting diode (LED) and the optothermal window
Light emitting diode (LED) combined with the concept of optothermal window (OW) is proposed as a new approach (LED-OW) to detect lycopene in a wide range of tomato-based products (tomato juice, tomato ketchup, tomato passata and tomato puree). Phytonutrient lycopene is a dominant antioxidant in these products while beta-carotene is present in significantly lower quantities. Therefore for all practical reasons the interfering effect of beta-carotene at 502 nm analytical wavelength can be neglected. The LED-OW method is low-cost and simple, yet accurate and precise. The major attributes of the new method are its rapid speed of response and the fact that no preparation whatsoever of the sample is needed before the analysis. The lycopene found in tomato products studied here varies from 8 mg/100 g to 60 mg/100 g fresh product. Results obtained by LED-OW method were compared to the outcome of conventional, time consuming spectrophotometric methods and the correlation was very good (R = 0.98). Precision of the LED-OW instrumental setup ranged from 0.5 to 7.4%; the RSD achieved for lycopene-richest samples (= 40 mg/100 g) did not exceed 1.7%. Repeatability of analysis by LED-OW was found to vary between 0.7 and 7.1%
Automated supervised classification of variable stars I. Methodology
The fast classification of new variable stars is an important step in making
them available for further research. Selection of science targets from large
databases is much more efficient if they have been classified first. Defining
the classes in terms of physical parameters is also important to get an
unbiased statistical view on the variability mechanisms and the borders of
instability strips. Our goal is twofold: provide an overview of the stellar
variability classes that are presently known, in terms of some relevant stellar
parameters; use the class descriptions obtained as the basis for an automated
`supervised classification' of large databases. Such automated classification
will compare and assign new objects to a set of pre-defined variability
training classes. For every variability class, a literature search was
performed to find as many well-known member stars as possible, or a
considerable subset if too many were present. Next, we searched on-line and
private databases for their light curves in the visible band and performed
period analysis and harmonic fitting. The derived light curve parameters are
used to describe the classes and define the training classifiers. We compared
the performance of different classifiers in terms of percentage of correct
identification, of confusion among classes and of computation time. We describe
how well the classes can be separated using the proposed set of parameters and
how future improvements can be made, based on new large databases such as the
light curves to be assembled by the CoRoT and Kepler space missions.Comment: This paper has been accepted for publication in Astronomy and
Astrophysics (reference AA/2007/7638) Number of pages: 27 Number of figures:
1
Eliminating the low-mass axigluon window
Using recent collider data, especially on the hadronic width the Z0, we
exclude axigluons in the currently allowed low-mass window, namely axigluons in
the mass range 50 GeV < M_A < 120 GeV. Combined with hadron collider data from
di-jet production, axigluons with masses below roughly 1 TeV are now completely
excluded.Comment: 8 pages, no figures, LaTe
Energy Conservation Constraints on Multiplicity Correlations in QCD Jets
We compute analytically the effects of energy conservation on the
self-similar structure of parton correlations in QCD jets. The calculations are
performed both in the constant and running coupling cases. It is shown that the
corrections are phenomenologically sizeable. On a theoretical ground, energy
conservation constraints preserve the scaling properties of correlations in QCD
jets beyond the leading log approximation.Comment: 11 pages, latex, 5 figures, .tar.gz version avaliable on
ftp://www.inln.unice.fr
Dijet resonances, widths and all that
The search for heavy resonances in the dijet channel is part of the on-going
physics programme, both at the Tevatron and at the LHC. Lower limits have been
placed on the masses of dijet resonances predicted in a wide variety of models.
However, across experiments, the search strategy assumes that the effect of the
new particles is well-approximated by on-shell production and subsequent decay
into a pair of jets. We examine the impact of off-shell effects on such
searches, particularly for strongly interacting resonances.Comment: Version published in JHE
Analysis of MERCATOR data Part I: variable B stars
We re-classified 31 variable B stars which were observed more than 50 times
in the Geneva photometric system with the P7 photometer attached to the
MERCATOR telescope (La Palma) during its first 3 years of scientific
observations. HD89688 is a possible beta Cephei/slowly pulsating B star hybrid
and the main mode of the COROT target HD180642 shows non-linear effects. The
Maia candidates are re-classified as either ellipsoidal variables or spotted
stars. Although the mode identification is still ongoing, all the
well-identified modes so far have a degree l = 0, 1 or 2.Comment: 4 pages, 3 figures. To appear in: Proceedings of JENAM 2005 'Distant
worlds', Communications in Asteroseismolog
Lepton flavor violation at linear collider experiments in supersymmetric grand unified theories
Lepton flavor violation at linear collider experiments is discussed. We show
that detectable lepton flavor violation could occur through scalar lepton pair
production and decay in the supersymmetric SU(5) grand unified theory in spite
of the stringent present experimental constraints by rare process searches.
Possible cross sections about 40fb for an e+e- collider and 280fb for an e-e-
collider are illustrated.Comment: 12 pages, including 3 figures, REVTeX, eps
Fourier Analysis of Gapped Time Series: Improved Estimates of Solar and Stellar Oscillation Parameters
Quantitative helio- and asteroseismology require very precise measurements of
the frequencies, amplitudes, and lifetimes of the global modes of stellar
oscillation. It is common knowledge that the precision of these measurements
depends on the total length (T), quality, and completeness of the observations.
Except in a few simple cases, the effect of gaps in the data on measurement
precision is poorly understood, in particular in Fourier space where the
convolution of the observable with the observation window introduces
correlations between different frequencies. Here we describe and implement a
rather general method to retrieve maximum likelihood estimates of the
oscillation parameters, taking into account the proper statistics of the
observations. Our fitting method applies in complex Fourier space and exploits
the phase information. We consider both solar-like stochastic oscillations and
long-lived harmonic oscillations, plus random noise. Using numerical
simulations, we demonstrate the existence of cases for which our improved
fitting method is less biased and has a greater precision than when the
frequency correlations are ignored. This is especially true of low
signal-to-noise solar-like oscillations. For example, we discuss a case where
the precision on the mode frequency estimate is increased by a factor of five,
for a duty cycle of 15%. In the case of long-lived sinusoidal oscillations, a
proper treatment of the frequency correlations does not provide any significant
improvement; nevertheless we confirm that the mode frequency can be measured
from gapped data at a much better precision than the 1/T Rayleigh resolution.Comment: Accepted for publication in Solar Physics Topical Issue
"Helioseismology, Asteroseismology, and MHD Connections
Charginos and Neutralinos Production at 3-3-1 Supersymmetric Model in Scattering
The goal of this article is to derive the Feynman rules involving charginos,
neutralinos, double charged gauge bosons and sleptons in a 3-3-1 supersymmetric
model. Using these Feynman rules we will calculate the production of a double
charged chargino with a neutralino and also the production of a pair of single
charged charginos, both in an electron- electron process.Comment: 18 pages, 8 figures, 2 table
Interface electronic states and boundary conditions for envelope functions
The envelope-function method with generalized boundary conditions is applied
to the description of localized and resonant interface states. A complete set
of phenomenological conditions which restrict the form of connection rules for
envelope functions is derived using the Hermiticity and symmetry requirements.
Empirical coefficients in the connection rules play role of material parameters
which characterize an internal structure of every particular heterointerface.
As an illustration we present the derivation of the most general connection
rules for the one-band effective mass and 4-band Kane models. The conditions
for the existence of Tamm-like localized interface states are established. It
is shown that a nontrivial form of the connection rules can also result in the
formation of resonant states. The most transparent manifestation of such states
is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.
- …
