11,979 research outputs found
Probing the evolving massive star population in Orion with kinematic and radioactive tracers
We assemble a census of the most massive stars in Orion, then use stellar
isochrones to estimate their masses and ages, and use these results to
establish the stellar content of Orion's individual OB associations. From this,
our new population synthesis code is utilized to derive the history of the
emission of UV radiation and kinetic energy of the material ejected by the
massive stars, and also follow the ejection of the long-lived radioactive
isotopes 26Al and 60Fe. In order to estimate the precision of our method, we
compare and contrast three distinct representations of the massive stars. We
compare the expected outputs with observations of 26Al gamma-ray signal and the
extent of the Eridanus cavity. We find an integrated kinetic energy emitted by
the massive stars of 1.8(+1.5-0.4)times 10^52 erg. This number is consistent
with the energy thought to be required to create the Eridanus superbubble. We
also find good agreement between our model and the observed 26Al signal,
estimating a mass of 5.8(+2.7-2.5) times 10^-4 Msol of 26Al in the Orion
region. Our population synthesis approach is demonstrated for the Orion region
to reproduce three different kinds of observable outputs from massive stars in
a consistent manner: Kinetic energy as manifested in ISM excavation, ionization
as manifested in free-free emission, and nucleosynthesis ejecta as manifested
in radioactivity gamma-rays. The good match between our model and the
observables does not argue for considerable modifications of mass loss. If
clumping effects turn out to be strong, other processes would need to be
identified to compensate for their impact on massive-star outputs. Our
population synthesis analysis jointly treats kinematic output and the return of
radioactive isotopes, which proves a powerful extension of the methodology that
constrains feedback from massive stars.Comment: Accepted for publication in A&A, 10 page
Synthetic 26Al emission from galactic-scale superbubble simulations
© 2019 The Author(s).Emission from the radioactive trace element 26Al has been observed throughout the Milky Way with the COMPTEL and INTEGRAL satellites. In particular the Doppler shifts measured with INTEGRAL connect 26Al with superbubbles, which may guide 26Al flows off spiral arms in the direction of Galactic rotation. In order to test this paradigm, we have performed galaxy-scale simulations of superbubbles with 26Al injection in a Milky Way-type galaxy. We produce all-sky synthetic ray emission maps of the simulated galaxies. We find that the 1809keV emission from the radioactive decay of 26Al is highly variable with time and the observer's position. This allows us to estimate an additional systematic variability of 0.2dex for a star formation rate derived from 26Al for different times and measurement locations in Milky Way-type galaxies. High-latitude morphological features indicate nearby emission with correspondingly high integrated gamma-ray intensities. We demonstrate that the 26Al scale height from our simulated galaxies depends on the assumed halo gas density. We present the first synthetic 1809keV longitude-velocity diagrams from 3D hydrodynamic simulations. The line-of-sight velocities for 26Al can be significantly different from the line-of-sight velocities associated with the cold gas. Over time, 26Al velocities consistent with the INTEGRAL observations, within uncertainties, appear at any given longitude, broadly supporting previous suggestions that 26Al injected into expanding superbubbles by massive stars may be responsible for the high velocities found in the INTEGRAL observations. We discuss the effect of systematically varying the location of the superbubbles relative to the spiral arms.Peer reviewedFinal Accepted Versio
Phase behavior of the Lattice Restricted Primitive Model with nearest-neighbor exclusion
The global phase behavior of the lattice restricted primitive model with
nearest neighbor exclusion has been studied by grand canonical Monte Carlo
simulations. The phase diagram is dominated by a fluid (or charge-disordered
solid) to charge-ordered solid transition that terminates at the maximum
density, and reduced temperature . At
that point, there is a first-order phase transition between two phases of the
same density, one charge-ordered and the other charge-disordered. The
liquid-vapor transition for the model is metastable, lying entirely within the
fluid-solid phase envelope.Comment: 6 pages, color. submitted to J. Chem. Phy
Results and status of the NASA aircraft engine emission reduction technology programs
The results of an aircraft engine emission reduction study are reviewed in detail. The capability of combustor concepts to produce significantly lower levels of exhaust emissions than present production combustors was evaluated. The development status of each combustor concept is discussed relative to its potential for implementation in aircraft engines. Also, the ability of these combustor concepts to achieve proposed NME and NCE EPA standards is discussed
Evidence for a Galactic gamma ray halo
We present quantitative statistical evidence for a -ray emission halo
surrounding the Galaxy. Maps of the emission are derived. EGRET data were
analyzed in a wavelet-based non-parametric hypothesis testing framework, using
a model of expected diffuse (Galactic + isotropic) emission as a null
hypothesis. The results show a statistically significant large scale halo
surrounding the center of the Milky Way as seen from Earth. The halo flux at
high latitudes is somewhat smaller than the isotropic gamma-ray flux at the
same energy, though of the same order (O(10^(-7)--10^(-6)) ph/cm^2/s/sr above 1
GeV).Comment: Final version accepted for publication in New Astronomy. Some
additional results/discussion included, along with entirely revised figures.
19 pages, 15 figures, AASTeX. Better quality figs (PS and JPEG) are available
at http://tigre.ucr.edu/halo/paper.htm
The Progenitor of the New COMPTEL/ROSAT Supernova Remnant in Vela
We show that (1) the newly discovered supernova remnant (SNR), GRO
J0852--4642/RX J0852.0--4622, was created by a core-collapse supernova of a
massive star, and (2) the same supernova event which produced the Ti
detected by COMPTEL from this source is probably also responsible for a large
fraction of the observed Al emission in the Vela region detected by the
same instrument. The first conclusion is based on the fact that the remnant is
currently expanding too slowly given its young age for it to be caused by a
Type Ia supernova. If the current SNR shell expansion speed is greater than
3000 km/s, a Type II supernova with a moderate kinetic energy
exploding at about 150 pc away is favored. If the SNR expansion speed is lower
than 2000 km s, as derived naively from the X-ray data, a much more
energetic supernova is required to have occurred at pc away in a
dense environment at the edge of the Gum nebula. This progenitor has a
preferred ejecta mass of and therefore, it is probably a Type
Ib or Type Ic supernova. However, the required high ambient density of in this scenario is difficult to reconcile with the regional CO
data. A combination of our estimates of the age/energetics of the new SNR and
the almost perfect positional coincidence of the new SNR with the centroid of
the COMPTEL Al emission feature of the Vela region strongly favors a
causal connection. If confirmed, this will be the first case where both
Ti and Al are detected from the same young SNR and together they
can be used to select preferred theoretical core-collapse supernova models.Comment: Revised, 10 pages, 2 figures, to appear in ApJ Lett Vol.514 on April
1, 199
The COMPTEL instrumental line background
The instrumental line background of the Compton telescope COMPTEL onboard the
Compton Gamma-Ray Observatory is due to the activation and/or decay of many
isotopes. The major components of this background can be attributed to eight
individual isotopes, namely 2D, 22Na, 24Na, 28Al, 40K, 52Mn, 57Ni, and 208Tl.
The identification of instrumental lines with specific isotopes is based on the
line energies as well as on the variation of the event rate with time,
cosmic-ray intensity, and deposited radiation dose during passages through the
South-Atlantic Anomaly. The characteristic variation of the event rate due to a
specific isotope depends on its life-time, orbital parameters such as the
altitude of the satellite above Earth, and the solar cycle. A detailed
understanding of the background contributions from instrumental lines is
crucial at MeV energies for measuring the cosmic diffuse gamma-ray background
and for observing gamma-ray line emission in the interstellar medium or from
supernovae and their remnants. Procedures to determine the event rate from each
background isotope are described, and their average activity in spacecraft
materials over the first seven years of the mission is estimated.Comment: accepted for publication in A&A, 22 pages, 21 figure
- …
