6,985 research outputs found

    The possibility of a metal insulator transition in antidot arrays induced by an external driving

    Full text link
    It is shown that a family of models associated with the kicked Harper model is relevant for cyclotron resonance experiments in an antidot array. For this purpose a simplified model for electronic motion in a related model system in presence of a magnetic field and an AC electric field is developed. In the limit of strong magnetic field it reduces to a model similar to the kicked Harper model. This model is studied numerically and is found to be extremely sensitive to the strength of the electric field. In particular, as the strength of the electric field is varied a metal -- insulator transition may be found. The experimental conditions required for this transition are discussed.Comment: 6 files: kharp.tex, fig1.ps fig2.ps fi3.ps fig4.ps fig5.p

    Quenched and Negative Hall Effect in Periodic Media: Application to Antidot Superlattices

    Full text link
    We find the counterintuitive result that electrons move in OPPOSITE direction to the free electron E x B - drift when subject to a two-dimensional periodic potential. We show that this phenomenon arises from chaotic channeling trajectories and by a subtle mechanism leads to a NEGATIVE value of the Hall resistivity for small magnetic fields. The effect is present also in experimentally recorded Hall curves in antidot arrays on semiconductor heterojunctions but so far has remained unexplained.Comment: 10 pages, 4 figs on request, RevTeX3.0, Europhysics Letters, in pres

    Nonlinear Dynamics of Composite Fermions in Nanostructures

    Full text link
    We outline a theory describing the quasi-classical dynamics of composite fermions in the fractional quantum Hall regime in the potentials of arbitrary nanostructures. By an appropriate parametrization of time we show that their trajectories are independent of their mass and dispersion. This allows to study the dynamics in terms of an effective Hamiltonian although the actual dispersion is as yet unknown. The applicability of the theory is verified in the case of antidot arrays where it explains details of magnetoresistance measurements and thus confirms the existence of these quasiparticles.Comment: submitted to Europhys. Lett., 4 pages, postscrip

    Skipping orbits and enhanced resistivity in large-diameter InAs/GaSb antidot lattices

    Get PDF
    We investigated the magnetotransport properties of high-mobility InAs/GaSb antidot lattices. In addition to the usual commensurability features at low magnetic field we found a broad maximum of classical origin around 2.5 T. The latter can be ascribed to a class of rosetta type orbits encircling a single antidot. This is shown by both a simple transport calculation based on a classical Kubo formula and an analysis of the Poincare surface of section at different magnetic field values. At low temperatures we observe weak 1/B-periodic oscillations superimposed on the classical maximum.Comment: 4 pages, 4 Postscript figures, REVTeX, submitted to Phys Rev

    Devil's Staircase in Magnetoresistance of a Periodic Array of Scatterers

    Full text link
    The nonlinear response to an external electric field is studied for classical non-interacting charged particles under the influence of a uniform magnetic field, a periodic potential, and an effective friction force. We find numerical and analytical evidence that the ratio of transversal to longitudinal resistance forms a Devil's staircase. The staircase is attributed to the dynamical phenomenon of mode-locking.Comment: two-column 4 pages, 5 figure

    Duality Relation among Periodic Potential Problems in the Lowest Landau Level

    Full text link
    Using a momentum representation of a magnetic von Neumann lattice, we study a two-dimensional electron in a uniform magnetic field and obtain one-particle spectra of various periodic short-range potential problems in the lowest Landau level.We find that the energy spectra satisfy a duality relation between a period of the potential and a magnetic length. The energy spectra consist of the Hofstadter-type bands and flat bands. We also study the connection between a periodic short-range potential problem and a tight-binding model.Comment: 6 pages, 3 figures, final version to appear in PR

    Perfectly Translating Lattices on a Cylinder

    Full text link
    We perform molecular dynamics simulations on an interacting electron gas confined to a cylindrical surface and subject to a radial magnetic field and the field of the positive background. In order to study the system at lowest energy states that still carry a current, initial configurations are obtained by a special quenching procedure. We observe the formation of a steady state in which the entire electron-lattice cycles with a common uniform velocity. Certain runs show an intermediate instability leading to lattice rearrangements. A Hall resistance can be defined and depends linearly on the magnetic field with an anomalous coefficient reflecting the manybody contributions peculiar to two dimensions.Comment: 13 pages, 5 figure

    A repulsive trap for two electrons in a magnetic field

    Full text link
    We study numerically and analytically the dynamics of two classical electrons with Coulomb interaction in a two dimensional antidot superlattice potential in the presence of crossed electric and magnetic fields. It is found that near one antidot the electron pair can be trapped for a long time and the escape rate from such a trap is proportional to the square of a weak electric field. This is qualitatively different from the case of noninteracting electrons which are trapped forever by the antidot. For the pair propagation in the antidot superlattice we found a broad parameter regime for which the pair is stable and where two repulsive electrons propagate together on an enormously large distance.Comment: revtex, 5 pages, 6 figure

    How branching can change the conductance of ballistic semiconductor devices

    Full text link
    We demonstrate that branching of the electron flow in semiconductor nanostructures can strongly affect macroscopic transport quantities and can significantly change their dependence on external parameters compared to the ideal ballistic case even when the system size is much smaller than the mean free path. In a corner-shaped ballistic device based on a GaAs/AlGaAs two-dimensional electron gas we observe a splitting of the commensurability peaks in the magnetoresistance curve. We show that a model which includes a random disorder potential of the two-dimensional electron gas can account for the random splitting of the peaks that result from the collimation of the electron beam. The shape of the splitting depends on the particular realization of the disorder potential. At the same time magnetic focusing peaks are largely unaffected by the disorder potential.Comment: accepted for publication in Phys. Rev.
    corecore