92,668 research outputs found

    Fourier's law on a one-dimensional optical random lattice

    Full text link
    We study the transport properties of a one-dimensional hard-core bosonic lattice gas coupled to two particle reservoirs at different chemical potentials which generate a current flow through the system. In particular, the influence of random fluctuations of the underlying lattice on the stationary-state properties is investigated. We show analytically that the steady-state density presents a linear profile. The local steady-state current obeys the Fourier law j=κ(τ)nj=-\kappa(\tau)\nabla n where τ\tau is a typical timescale of the lattice fluctuations and n\nabla n the density gradient imposed by the reservoirs.Comment: 9 pages, 2 figure

    The synthesis of some acylglycines and related oxazolones

    Get PDF
    No description supplie

    Cold water aquifer storage

    Get PDF
    A working prototype system is described in which water is pumped from an aquifer at 70 F in the winter time, chilled to a temperature of less than 50 F, injected into a ground-water aquifer, stored for a period of several months, pumped back to the surface in the summer time. A total of 8.1 million gallons of chilled water at an average temperature of 48 F were injected. This was followed by a storage period of 100 days. The recovery cycle was completed a year later with a total of 8.1 million gallons recovered. Approximately 20 percent of the chill energy was recovered

    Web 2.0 and micro-businesses: An exploratory investigation

    Get PDF
    This is the author's final version of the article. This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here. Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited.This article was chosen as a Highly Commended Award Winner at the Emerald Literati Network Awards for Excellence 2013.Purpose – The paper aims to report on an exploratory study into how small businesses use Web 2.0 information and communication technologies (ICT) to work collaboratively with other small businesses. The study had two aims: to investigate the benefits available from the use of Web 2.0 in small business collaborations, and to characterize the different types of such online collaborations. Design/methodology/approach – The research uses a qualitative case study methodology based on semi-structured interviews with the owner-managers of 12 UK-based small companies in the business services sector who are early adopters of Web 2.0 technologies. Findings – Benefits from the use of Web 2.0 are categorized as lifestyle benefits, internal operational efficiency, enhanced capability, external communications and enhanced service offerings. A 2×2 framework is developed to categorize small business collaborations using the dimensions of the basis for inter-organizational collaboration (control vs cooperation) and the level of Web 2.0 ICT use (simple vs sophisticated). Research limitations/implications – A small number of firms of similar size, sector and location were studied, which limits generalizability. Nonetheless, the results offer a pointer to the likely future use of Web 2.0 tools by other small businesses. Practical implications – The research provides evidence of the attraction and potential of Web 2.0 for collaborations between small businesses. Originality/value – The paper is one of the first to report on use of Web 2.0 ICT in collaborative working between small businesses. It will be of interest to those seeking a better understanding of the potential of Web 2.0 in the small business community.WestFocu

    A three dimensional model of the Venusian thermosphere with superrotation

    Get PDF
    An improved three dimensional spectral model of the thermosphere of Venus is described. The model solves the Navier-Stokes equations and includes nonlinear effects for an arbitrary number of atmospheric species. A two dimensional axisymmetric model of the superrotation of the thermosphere is also presented. This model addresses the Pioneer-Venus mission finding, which suggested the thermospheric rotation rate to be much higher than that of the planet as seen from the asymmetric distribution of hydrogen and helium. Both models include the effects of an anisotropic eddy diffusion that is consistent with atmospheric mixing length theory

    Wind tunnel testing of low-drag airfoils

    Get PDF
    Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils

    Dynamic Kerr effect responses in the Terahertz-range

    Full text link
    Dynamic Kerr effect measurements provide a simple realization of a nonlinear experiment. We propose a field-off experiment where an electric field of one or several sinusoidal cycles is applied to a sample in thermal equilibrium. Afterwards, the evolution of the polarizability is measured. If such an experiment is performed in the Terahertz-range it might provide valuable information about the low-frequency dynamics in disordered systems. We treat these dynamics in terms of a Brownian oscillator model and calculate the Kerr effect response. It is shown that frequency-selective behaviour can be expected. In the interesting case of underdamped vibrational motion we find that the frequency-dependence of the phonon-damping can be determined from the experiment. Also the behaviour of overdamped relaxational modes is discussed. For typical glassy materials we estimate the magnitude of all relevant quantities, which we believe to be helpful in experimental realizations.Comment: 26 pages incl. 5 figure

    Zero range model of traffic flow

    Get PDF
    A multi--cluster model of traffic flow is studied, in which the motion of cars is described by a stochastic master equation. Assuming that the escape rate from a cluster depends only on the cluster size, the dynamics of the model is directly mapped to the mathematically well-studied zero-range process. Knowledge of the asymptotic behaviour of the transition rates for large clusters allows us to apply an established criterion for phase separation in one-dimensional driven systems. The distribution over cluster sizes in our zero-range model is given by a one--step master equation in one dimension. It provides an approximate mean--field dynamics, which, however, leads to the exact stationary state. Based on this equation, we have calculated the critical density at which phase separation takes place. We have shown that within a certain range of densities above the critical value a metastable homogeneous state exists before coarsening sets in. Within this approach we have estimated the critical cluster size and the mean nucleation time for a condensate in a large system. The metastablity in the zero-range process is reflected in a metastable branch of the fundamental flux--density diagram of traffic flow. Our work thus provides a possible analytical description of traffic jam formation as well as important insight into condensation in the zero-range process.Comment: 10 pages, 13 figures, small changes are made according to finally accepted version for publication in Phys. Rev.
    corecore