2,032 research outputs found
Strain and dynamic measurements using fiber optic sensors embedded into graphite/epoxy tubes
Graphite/epoxy tubes were fabricated with embedded optical fibers to evaluate the feasibility of monitoring strains with a fiber optic technique. Resistance strain gauges were attached to the tubes to measure strain at four locations along the tube for comparison with the fiber optic sensors. Both static and dynamic strain measurements were made with excellent agreement between the embedded fiber optic strain sensor and the strain gauges. Strain measurements of 10(exp -7) can be detected with the optical phase locked loop (OPLL) system using optical fiber. Because of their light weight, compatibility with composites, immunity to electromagnetic interference, and based on the static and dynamic results obtained, fiber optic sensors embedded in composites may be useful as the sensing component of smart structures
Quantum Computation with Quantum Dots and Terahertz Cavity Quantum Electrodynamics
A quantum computer is proposed in which information is stored in the two
lowest electronic states of doped quantum dots (QDs). Many QDs are located in a
microcavity. A pair of gates controls the energy levels in each QD. A
Controlled Not (CNOT) operation involving any pair of QDs can be effected by a
sequence of gate-voltage pulses which tune the QD energy levels into resonance
with frequencies of the cavity or a laser. The duration of a CNOT operation is
estimated to be much shorter than the time for an electron to decohere by
emitting an acoustic phonon.Comment: Revtex 6 pages, 3 postscript figures, minor typos correcte
Making electromagnetic wavelets
Electromagnetic wavelets are constructed using scalar wavelets as
superpotentials, together with an appropriate polarization. It is shown that
oblate spheroidal antennas, which are ideal for their production and reception,
can be made by deforming and merging two branch cuts. This determines a unique
field on the interior of the spheroid which gives the boundary conditions for
the surface charge-current density necessary to radiate the wavelets. These
sources are computed, including the impulse response of the antenna.Comment: 29 pages, 4 figures; minor corrections and addition
The Interface Region Imaging Spectrograph (IRIS)
The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft
provides simultaneous spectra and images of the photosphere, chromosphere,
transition region, and corona with 0.33-0.4 arcsec spatial resolution, 2 s
temporal resolution and 1 km/s velocity resolution over a field-of-view of up
to 175 arcsec x 175 arcsec. IRIS was launched into a Sun-synchronous orbit on
27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm UV telescope
that feeds a slit-based dual-bandpass imaging spectrograph. IRIS obtains
spectra in passbands from 1332-1358, 1389-1407 and 2783-2834 Angstrom including
bright spectral lines formed in the chromosphere (Mg II h 2803 Angstrom and Mg
II k 2796 Angstrom) and transition region (C II 1334/1335 Angstrom and Si IV
1394/1403 Angstrom). Slit-jaw images in four different passbands (C II 1330, Si
IV 1400, Mg II k 2796 and Mg II wing 2830 Angstrom) can be taken simultaneously
with spectral rasters that sample regions up to 130 arcsec x 175 arcsec at a
variety of spatial samplings (from 0.33 arcsec and up). IRIS is sensitive to
emission from plasma at temperatures between 5000 K and 10 MK and will advance
our understanding of the flow of mass and energy through an interface region,
formed by the chromosphere and transition region, between the photosphere and
corona. This highly structured and dynamic region not only acts as the conduit
of all mass and energy feeding into the corona and solar wind, it also requires
an order of magnitude more energy to heat than the corona and solar wind
combined. The IRIS investigation includes a strong numerical modeling component
based on advanced radiative-MHD codes to facilitate interpretation of
observations of this complex region. Approximately eight Gbytes of data (after
compression) are acquired by IRIS each day and made available for unrestricted
use within a few days of the observation.Comment: 53 pages, 15 figure
Particle and Antiparticle sectors in DSR1 and kappa-Minkowski space-time
In this paper we explore the problem of antiparticles in DSR1 and
-Minkowski space-time following three different approaches inspired by
the Lorentz invariant case: a) the dispersion relation, b) the Dirac equation
in space-time and c) the Dirac equation in momentum space. We find that it is
possible to define a map which gives the antiparticle sector from the
negative frequency solutions of the wave equation. In -Poincar\'e, the
corresponding map is the antipodal mapping, which is different from
. The difference is related to the composition law, which is crucial
to define the multiparticle sector of the theory. This discussion permits to
show that the energy of the antiparticle in DSR is the positive root of the
dispersion relation, which is consistent with phenomenological approaches.Comment: 15 pages, no figures, some references added, typos correcte
Anisotropic splitting of intersubband spin plasmons in quantum wells with bulk and structural inversion asymmetry
In semiconductor heterostructures, bulk and structural inversion asymmetry
and spin-orbit coupling induce a k-dependent spin splitting of valence and
conduction subbands, which can be viewed as being caused by momentum-dependent
crystal magnetic fields. This paper studies the influence of these effective
magnetic fields on the intersubband spin dynamics in an asymmetric n-type
GaAs/AlGaAs quantum well. We calculate the dispersions of intersubband spin
plasmons using linear response theory. The so-called D'yakonov-Perel'
decoherence mechanism is inactive for collective intersubband excitations,
i.e., crystal magnetic fields do not lead to decoherence of spin plasmons.
Instead, we predict that the main signature of bulk and structural inversion
asymmetry in intersubband spin dynamics is a three-fold, anisotropic splitting
of the spin plasmon dispersion. The importance of many-body effects is pointed
out, and conditions for experimental observation with inelastic light
scattering are discussed.Comment: 8 pages, 6 figure
The short term debt vs. long term debt puzzle: a model for the optimal mix
This paper argues that the existing finance literature is inadequate with respect to its coverage of capital structure of small and medium sized enterprises (SMEs). In particular it is argued that the cost of equity (being both conceptually ill defined and empirically non quantifiable) is not applicable to the capital structure decisions for a large proportion of SMEs and the optimal capital structure depends only on the mix of short and long term debt. The paper then presents a model, developed by practitioners for optimising the debt mix and demonstrates its practical application using an Italian firm's debt structure as a case study
Complex-Distance Potential Theory and Hyperbolic Equations
An extension of potential theory in R^n is obtained by continuing the
Euclidean distance function holomorphically to C^n. The resulting Newtonian
potential is generated by an extended source distribution D(z) in C^n whose
restriction to R^n is the delta function. This provides a natural model for
extended particles in physics. In C^n, interpreted as complex spacetime, D(z)
acts as a propagator generating solutions of the wave equation from their
initial values. This gives a new connection between elliptic and hyperbolic
equations that does not assume analyticity of the Cauchy data. Generalized to
Clifford analysis, it induces a similar connection between solutions of
elliptic and hyperbolic Dirac equations. There is a natural application to the
time-dependent, inhomogeneous Dirac and Maxwell equations, and the
`electromagnetic wavelets' introduced previously are an example.Comment: 25 pages, submited to Proceedings of 5th Intern. Conf. on Clifford
Algebras, Ixtapa, June 24 - July 4, 199
- …
