5,074 research outputs found
On the relationship between the non-local clustering mechanism and preferential concentration
`Preferential concentration' (\emph{Phys. Fluids} \textbf{A3}:1169--78, 1991)
refers to the clustering of inertial particles in the high-strain, low-rotation
regions of turbulence. The `centrifuge mechanism' of Maxey (\emph{J. Fluid
Mech.} \textbf{174}:441--65, 1987) appears to explain this phenomenon. In a
recent paper, Bragg \& Collins (\emph{New J. Phys.} \textbf{16}:055013, 2014)
showed that the centrifuge mechanism is dominant only in the regime ,
where is the Stokes number based on the Kolmogorov time scale. Outside
this regime, the centrifuge mechanism gives way to a non-local, path-history
symmetry breaking mechanism. However, despite the change in the clustering
mechanism, the instantaneous particle positions continue to correlate with
high-strain, low-rotation regions of the turbulence. In this paper, we analyze
the exact equation governing the radial distribution function and show how the
non-local clustering mechanism is influenced by, but not dependent upon, the
preferential sampling of the fluid velocity gradient tensor along the particle
path-histories in such a way as to generate a bias for clustering in
high-strain regions of the turbulence. We also show how the non-local mechanism
still generates clustering, but without preferential concentration, in the
limit where the timescales of the fluid velocity gradient tensor measured along
the inertial particle trajectories approaches zero (such as white-noise flows
or for particles in turbulence settling under strong gravity). Finally, we use
data from a direct numerical simulation of inertial particles suspended in
Navier-Stokes turbulence to validate the arguments presented in this study.Comment: 16 pages, 4 figure
Differential cross section analysis in kaon photoproduction using associated legendre polynomials
Angular distributions of differential cross sections from the latest CLAS
data sets \cite{bradford}, for the reaction have been analyzed using associated Legendre polynomials. This
analysis is based upon theoretical calculations in Ref. \cite{fasano} where all
sixteen observables in kaon photoproduction can be classified into four
Legendre classes. Each observable can be described by an expansion of
associated Legendre polynomial functions. One of the questions to be addressed
is how many associated Legendre polynomials are required to describe the data.
In this preliminary analysis, we used data models with different numbers of
associated Legendre polynomials. We then compared these models by calculating
posterior probabilities of the models. We found that the CLAS data set needs no
more than four associated Legendre polynomials to describe the differential
cross section data. In addition, we also show the extracted coefficients of the
best model.Comment: Talk given at APFB08, Depok, Indonesia, August, 19-23, 200
Tissue Inhibitor of Metalloproteinase–3 (TIMP-3) induces FAS dependent apoptosis in human vascular smooth muscle cells
Over expression of Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) in vascular smooth muscle cells (VSMCs) induces apoptosis and reduces neointima formation occurring after saphenous vein interposition grafting or coronary stenting. In studies to address the mechanism of TIMP-3-driven apoptosis in human VSMCs we find that TIMP-3 increased activation of caspase-8 and apoptosis was inhibited by expression of Cytokine response modifier A (CrmA) and dominant negative FAS-Associated protein with Death Domain (FADD). TIMP-3 induced apoptosis did not cause mitochondrial depolarisation, increase activation of caspase-9 and was not inhibited by over-expression of B-cell Lymphoma 2 (Bcl2), indicating a mitochondrial independent/type-I death receptor pathway. TIMP-3 increased levels of the First Apoptosis Signal receptor (FAS) and depletion of FAS with shRNA showed TIMP-3-induced apoptosis was FAS dependent. TIMP-3 induced formation of the Death-Inducing Signalling Complex (DISC), as detected by immunoprecipitation and by immunofluorescence. Cellular-FADD-like IL-1 converting enzyme-Like Inhibitory Protein (c-FLIP) localised with FAS at the cell periphery in the absence of TIMP-3 and this localisation was lost on TIMP-3 expression with c-FLIP adopting a perinuclear localisation. Although TIMP-3 inhibited FAS shedding, this did not increase total surface levels of FAS but instead increased FAS levels within localised regions at the cell surface. A Disintegrin And Metalloproteinase 17 (ADAM17) is inhibited by TIMP-3 and depletion of ADAM17 with shRNA significantly decreased FAS shedding. However ADAM17 depletion did not induce apoptosis or replicate the effects of TIMP-3 by increasing localised clustering of cell surface FAS. ADAM17-depleted cells could activate caspase-3 when expressing levels of TIMP-3 that were otherwise sub-apoptotic, suggesting a partial role for ADAM17 mediated ectodomain shedding in TIMP-3 mediated apoptosis. We conclude that TIMP-3 induced apoptosis in VSMCs is highly dependent on FAS and is associated with changes in FAS and c-FLIP localisation, but is not solely dependent on shedding of the FAS ectodomain
Kaon Photoproduction and the Decay Parameter
The weak decay parameter of the is an important quantity
for the extraction of polarization observables in various experiments.
Moreover, in combination with from decay it provides a
measure for matter-antimatter asymmetry. The weak decay parameter also affects
the decay parameters of the and baryons and, in general, any
quantity in which the polarization of the is relevant. The recently
reported value by the BESIII collaboration of is significantly
larger than the previous PDG value of that had been accepted and
used for over 40 years. In this work we make an independent estimate of
, using an extensive set of polarization data measured in kaon
photoproduction in the baryon resonance region and constraints set by spin
algebra. The obtained value is 0.721(6)(5). The result is corroborated by
multiple statistical tests as well as a modern phenomenological model, showing
that our new value yields the best description of the data in question. Our
analysis supports the new BESIII finding that is significantly
larger than the previous PDG value. Any experimental quantity relying on the
value of should therefore be re-considered.Comment: 6 pages, 1 figure
Discovery of spatial periodicities in a coronal loop using automated edge-tracking algorithms
A new method for automated coronal loop tracking, in both spatial and temporal domains, is presented. Applying this technique to TRACE data, obtained using the 171 Å filter on 1998 July 14, we detect a coronal loop undergoing a 270 s kink-mode oscillation, as previously found by Aschwanden et al. However, we also detect flare-induced, and previously unnoticed, spatial periodicities on a scale of 3500 km, which occur along the coronal loop edge. Furthermore, we establish a reduction in oscillatory power for these spatial periodicities of 45% over a 222 s interval. We relate the reduction in detected oscillatory power to the physical damping of these loop-top oscillations
Born Again Protoplanetary Disk Around Mira B
The Mira AB system is a nearby (~107 pc) example of a wind accreting binary
star system. In this class of system, the wind from a mass-losing red giant
star (Mira A) is accreted onto a companion (Mira B), as indicated by an
accretion shock signature in spectra at ultraviolet and X-ray wavelengths.
Using novel imaging techniques, we report the detection of emission at
mid-infrared wavelengths between 9.7 and 18.3 m from the vicinity of Mira
B but with a peak at a radial position about 10 AU closer to the primary Mira
A. We interpret the mid-infrared emission as the edge of an optically-thick
accretion disk heated by Mira A. The discovery of this new class of accretion
disk fed by M-giant mass loss implies a potential population of young planetary
systems in white-dwarf binaries which has been little explored, despite being
relatively common in the solar neighborhood.Comment: Accepted for Ap
- …
