9,985 research outputs found
Robust stationary entanglement of two coupled qubits in independent environments
The dissipative dynamics of two interacting qubits coupled to independent
reservoirs at nonzero temperatures is investigated, paying special attention to
the entanglement evolution. The counter-rotating terms in the qubit-qubit
interaction give rise to stationary entanglement, traceable back to the ground
state structure. The robustness of this entanglement against thermal noise is
thoroughly analyzed, establishing that it can be detected at reasonable
experimental temperatures. Some effects linked to a possible reservoir
asymmetry are brought to light.Comment: 8 pages, 6 figures; version accepted for publication on Eur. Phys. J.
Wide Band Permittivity Measurements of Palm (Phoenix canariensis) and Rhynchophorus ferrugineus (Coleoptera: Curculionidae) for RF Pest Control
Microwave heating: a promising and eco-compatible solution to fight the spread of red palm weevil
Beam Spot Position Measurement at the LEP Collider
A precise knowledge of the beam spot position is required for many physics topics at LEP2. The movement of the beam spot is studied at LEP1 using beam orbit monitors close to the interaction points and compared with measurements from tracks produced in e+e- collisions. The beam orbit monitors are found to follow the beam spot position well, particularly when corrected for movements of nearby quadrupole magnets. Data from the LEP high energy run of November 1995 are also analysed, and projections made for the prospects at LEP2
Theodicy and End-of-Life Care
Acknowledgments The section on Islamic perspective is contributed by information provided by Imranali Panjwani, Tutor in Theology & Religious Studies, King's College London.Peer reviewedPublisher PD
Proceedings of the Workshop on Monte Carlo's, Physics and Simulations at the LHC PART II
These proceedings collect the presentations given at the first three meetings
of the INFN "Workshop on Monte Carlo's, Physics and Simulations at the LHC",
held at the Frascati National Laboratories in 2006. The first part of these
proceedings contains pedagogical introductions to several basic topics of both
theoretical and experimental high pT LHC physics. The second part collects more
specialised presentations.Comment: 157 pages, 136 figures; contribution by M. Grazzini has been adde
The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow
Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron’s lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiment and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry
- …
