10,640 research outputs found
Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries
We calculate the expected nHz--Hz gravitational wave (GW) spectrum from
coalescing Massive Black Hole (MBH) binaries resulting from mergers of their
host galaxies. We consider detection of this spectrum by precision pulsar
timing and a future Pulsar Timing Array. The spectrum depends on the merger
rate of massive galaxies, the demographics of MBHs at low and high redshift,
and the dynamics of MBH binaries. We apply recent theoretical and observational
work on all of these fronts. The spectrum has a characteristic strain
, just below the detection limit from
recent analysis of precision pulsar timing measurements. However, the amplitude
of the spectrum is still very uncertain owing to approximations in the
theoretical formulation of the model, to our lack of knowledge of the merger
rate and MBH population at high redshift, and to the dynamical problem of
removing enough angular momentum from the MBH binary to reach a GW-dominated
regime.Comment: 31 Pages, 8 Figures, small changes to match the published versio
Elastic energy of polyhedral bilayer vesicles
In recent experiments [M. Dubois, B. Dem\'e, T. Gulik-Krzywicki, J.-C.
Dedieu, C. Vautrin, S. D\'esert, E. Perez, and T. Zemb, Nature (London) Vol.
411, 672 (2001)] the spontaneous formation of hollow bilayer vesicles with
polyhedral symmetry has been observed. On the basis of the experimental
phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T.
Gulik-Krzywicki, J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc.
Natl. Acad. Sci. U.S.A. Vol. 101, 15082 (2004)] that the mechanism for the
formation of bilayer polyhedra is minimization of elastic bending energy.
Motivated by these experiments, we study the elastic bending energy of
polyhedral bilayer vesicles. In agreement with experiments, and provided that
excess amphiphiles exhibiting spontaneous curvature are present in sufficient
quantity, we find that polyhedral bilayer vesicles can indeed be energetically
favorable compared to spherical bilayer vesicles. Consistent with experimental
observations we also find that the bending energy associated with the vertices
of bilayer polyhedra can be locally reduced through the formation of pores.
However, the stabilization of polyhedral bilayer vesicles over spherical
bilayer vesicles relies crucially on molecular segregation of excess
amphiphiles along the ridges rather than the vertices of bilayer polyhedra.
Furthermore, our analysis implies that, contrary to what has been suggested on
the basis of experiments, the icosahedron does not minimize elastic bending
energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for
large polyhedron sizes, the snub dodecahedron and the snub cube both have lower
total bending energies than the icosahedron
Recommended from our members
Results of an aqueous source term model for a radiological risk assessment of the Drigg LLW Site, U.K.
A radionuclide source term model has been developed which simulates the biogeochemical evolution of the Drigg low level waste (LLW) disposal site. The DRINK (DRIgg Near field Kinetic) model provides data regarding radionuclide concentrations in groundwater over a period of 100,000 years, which are used as input to assessment calculations for a groundwater pathway. The DRINK model also provides input to human intrusion and gaseous assessment calculations through simulation of the solid radionuclide inventory. These calculations are being used to support the Drigg post closure safety case. The DRINK model considers the coupled interaction of the effects of fluid flow, microbiology, corrosion, chemical reaction, sorption and radioactive decay. It represents the first direct use of a mechanistic reaction-transport model in risk assessment calculations
Evolution of accretion disks around massive black holes: constraints from the demography of active galactic nuclei
Observations have shown that the Eddington ratios (the ratio of the
bolometric luminosity to the Eddington luminosity) in QSOs/active galactic
nuclei (AGNs) cover a wide range. In this paper we connect the demography of
AGNs obtained by the Sloan Digital Sky Survey with the accretion physics around
massive black holes and propose that the diversity in the Eddington ratios is a
natural result of the long-term evolution of accretion disks in AGNs. The
observed accretion rate distribution of AGNs (with host galaxy velocity
dispersion sigma~70-200 km/s) in the nearby universe (z<0.3) is consistent with
the predictions of simple theoretical models in which the accretion rates
evolve in a self-similar way. We also discuss the implications of the results
for the issues related to self-gravitating disks, coevolution of galaxies and
QSOs/AGNs, and the unification picture of AGNs.Comment: 18 pages, 2 figures; revised, main conclusions not changed; to appear
in ApJ, Oct., 200
Comparative chromosome band mapping in primates byin situ suppression hybridization of band specific DNA microlibraries
A DNA-library established from microdissected bands 8q23 to 8q24.1 of normal human chromosomes 8 (Lüdecke et al., 1989) was used as a probe for chromosomal in situ suppression (CISS-) hybridization to metaphase chromosomes of man and primates including Hylobates lar and Macaca fuscata. Comparative band mapping as first applied in this study shows the specific visualization of a single subchromosomal region in all three species and thus demonstrates that synteny of the bulk sequences of a specific human chromosome subregion has been conserved for more than 20 million years
Quantum Structure of Space Near a Black Hole Horizon
We describe a midi-superspace quantization scheme for generic single horizon
black holes in which only the spatial diffeomorphisms are fixed. The remaining
Hamiltonian constraint yields an infinite set of decoupled eigenvalue
equations: one at each spatial point. The corresponding operator at each point
is the product of the outgoing and ingoing null convergences, and describes the
scale invariant quantum mechanics of a particle moving in an attractive
potential. The variable that is analoguous to particle position is the
square root of the conformal mode of the metric. We quantize the theory via
Bohr quantization, which by construction turns the Hamiltonian constraint
eigenvalue equation into a finite difference equation. The resulting spectrum
gives rise to a discrete spatial topology exterior to the horizon. The spectrum
approaches the continuum in the asymptotic region.Comment: References added and typos corrected. 21 pages, 1 figur
Fitness-driven deactivation in network evolution
Individual nodes in evolving real-world networks typically experience growth
and decay --- that is, the popularity and influence of individuals peaks and
then fades. In this paper, we study this phenomenon via an intrinsic nodal
fitness function and an intuitive aging mechanism. Each node of the network is
endowed with a fitness which represents its activity. All the nodes have two
discrete stages: active and inactive. The evolution of the network combines the
addition of new active nodes randomly connected to existing active ones and the
deactivation of old active nodes with possibility inversely proportional to
their fitnesses. We obtain a structured exponential network when the fitness
distribution of the individuals is homogeneous and a structured scale-free
network with heterogeneous fitness distributions. Furthermore, we recover two
universal scaling laws of the clustering coefficient for both cases, and , where and refer to the node degree and the
number of active individuals, respectively. These results offer a new simple
description of the growth and aging of networks where intrinsic features of
individual nodes drive their popularity, and hence degree.Comment: IoP Styl
K Corrections For Type Ia Supernovae and a Test for Spatial Variation of the Hubble Constant
Cross-filter K corrections for a sample of "normal" Type Ia supernovae (SNe)
have been calculated for a range of epochs. With appropriate filter choices,
the combined statistical and systematic K correction dispersion of the full
sample lies within 0.05 mag for redshifts z<0.7. This narrow dispersion of the
calculated K correction allows the Type Ia to be used as a cosmological probe.
We use the K corrections with observations of seven SNe at redshifts 0.3 < z
<0.5 to bound the possible difference between the locally measured Hubble
constant (H_L) and the true cosmological Hubble constant (H_0).Comment: 6 pages, 3 Postscript figures, uuencoded uses crckapb.sty and
psfig.sty. To appear in Thermonuclear Supernovae (NATO ASI), eds. R. Canal,
P. Ruiz-LaPuente, and J. Isern. Postscript version is also available at
http://www-supernova.lbl.gov
Rhythmic dynamics and synchronization via dimensionality reduction : application to human gait
Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system
- …
