22,977 research outputs found
Antiferromagnetic s-d exchange coupling in GaMnAs
Measurements of coherent electron spin dynamics in
Ga(1-x)Mn(x)As/Al(0.4)Ga(0.6)As quantum wells with 0.0006% < x < 0.03% show an
antiferromagnetic (negative) exchange bewteen s-like conduction band electrons
and electrons localized in the d-shell of the Mn2+ impurities. The magnitude of
the s-d exchange parameter, N0 alpha, varies as a function of well width
indicative of a large and negative contribution due to kinetic exchange. In the
limit of no quantum confinement, N0 alpha extrapolates to -0.09 +/- 0.03 eV
indicating that antiferromagnetic s-d exchange is a bulk property of GaMnAs.
Measurements of the polarization-resolved photoluminescence show strong
discrepancy from a simple model of the exchange enhanced Zeeman splitting,
indicative of additional complexity in the exchange split valence band.Comment: 5 pages, 4 figures and one action figur
Wide-field mid-infrared and millimetre imaging of the high-redshift radio galaxy, 4C41.17
We present deep 350- and 1200-micron imaging of the region around 4C41.17 --
one of the most distant (z = 3.792) and luminous known radio galaxies --
obtained with the Submillimeter High Angular Resolution Camera (SHARC-II) and
the Max Planck Millimeter Bolometer Array (MAMBO). The radio galaxy is robustly
detected at 350- and 1200-micron, as are two nearby 850-micron-selected
galaxies; a third 850-micron source is detected at 350-micron and coincides
with a ~ 2-sigma feature in the 1200-micron map. Further away from the radio
galaxy an additional nine sources are detected at 1200-micron, bringing the
total number of detected (sub)millimeter selected galaxies (SMGs) in this field
to 14. Using radio images from the Very Large Array (VLA) and Spitzer
mid-infrared (mid-IR) data, we find statistically robust radio and/or 24-micron
counterparts to eight of the 14 SMGs in the field around 4C41.17. Follow-up
spectroscopy with Keck/LRIS has yielded redshifts for three of the eight
robustly identified SMGs, placing them in the redshift range 0.5 < z < 2.7,
i.e. well below that of 4C41.17. We infer photometric redshifts for a further
four sources using their 1.6-micron (rest-frame) stellar feature as probed by
the IRAC bands; only one of them is likely to be at the same redshift as
4C41.17. Thus at least four, and as many as seven, of the SMGs within the
4C41.17 field are physically unrelated to the radio galaxy. With the redshift
information at hand we are able to constrain the observed over-densities of
SMGs within radial bins stretching to R=50 and 100" (~ 0.4 and ~ 0.8Mpc at z ~
3.8) from the radio galaxy to ~ 5x and ~ 2x that of the field, dropping off to
the background value at R=150". [Abridged]Comment: 20 pages, 9 figures, accepted for publication in MNRA
Spin pseudo-gap and interplane coupling in Y_2Ba_4Cu_7O_{15}: a ^{63}Cu nuclear spin-spin relaxation study
We report measurements of the Gaussian contribution, T_{2G}, to the plane
^{63}Cu nuclear spin--spin relaxation time in the YBa_2Cu_3O_7 and YBa_2Cu_4O_8
blocks of normal and superconducting Y_2Ba_4Cu_7O_{15}. The data confirm our
previous results that adjacent CuO_2 planes have different doping levels and
that these planes are strongly coupled. -- The static spin susceptibility at
the anti-ferromagnetic wave vector exhibits a Curie--Weiss like temperature
dependence in the normal state. -- The Y_2Ba_4Cu_7O_{15} data are incompatible
with a phase diagram based on a single CuO_2 plane theory and suggest that the
appearance of a spin gap implies interplane coupling. Additional data for
YBa_2Cu_4O_8 and YBa_2Cu_3O_{6.982} are in accord with the single plane theory.
-- The temperature dependence of T_{2G,ind} below T_c excludes isotropic s-wave
superconductivity in all three compounds.Comment: 7 pages, REVTEX 3.0, 5 figures available upon reques
An effective theory of accelerated expansion
We work out an effective theory of accelerated expansion to describe general
phenomena of inflation and acceleration (dark energy) in the Universe. Our aim
is to determine from theoretical grounds, in a physically-motivated and model
independent way, which and how many (free) parameters are needed to broadly
capture the physics of a theory describing cosmic acceleration. Our goal is to
make as much as possible transparent the physical interpretation of the
parameters describing the expansion. We show that, at leading order, there are
five independent parameters, of which one can be constrained via general
relativity tests. The other four parameters need to be determined by observing
and measuring the cosmic expansion rate only, H(z). Therefore we suggest that
future cosmology surveys focus on obtaining an accurate as possible measurement
of to constrain the nature of accelerated expansion (dark energy and/or
inflation).Comment: In press; minor changes, results unchange
The Angular Clustering of WISE-Selected AGN: Different Haloes for Obscured and Unobscured AGN
We calculate the angular correlation function for a sample of 170,000 AGN
extracted from the Wide-field Infrared Survey Explorer (WISE) catalog, selected
to have red mid-IR colors (W1 - W2 > 0.8) and 4.6 micron flux densities
brighter than 0.14 mJy). The sample is expected to be >90% reliable at
identifying AGN, and to have a mean redshift of z=1.1. In total, the angular
clustering of WISE-AGN is roughly similar to that of optical AGN. We
cross-match these objects with the photometric SDSS catalog and distinguish
obscured sources with (r - W2) > 6 from bluer, unobscured AGN. Obscured sources
present a higher clustering signal than unobscured sources. Since the host
galaxy morphologies of obscured AGN are not typical red sequence elliptical
galaxies and show disks in many cases, it is unlikely that the increased
clustering strength of the obscured population is driven by a host galaxy
segregation bias. By using relatively complete redshift distributions from the
COSMOS survey, we find obscured sources at mean redshift z=0.9 have a bias of b
= 2.9 \pm 0.6 and are hosted in dark matter halos with a typical mass of
log(M/M_odot)~13.5. In contrast, unobscured AGN at z~1.1 have a bias of b = 1.6
\pm 0.6 and inhabit halos of log(M/M_odot)~12.4. These findings suggest that
obscured AGN inhabit denser environments than unobscured AGN, and are difficult
to reconcile with the simplest AGN unification models, where obscuration is
driven solely by orientation.Comment: Accepted for publication in ApJ. 13 pages, 15 figure
Poincaré maps define topography of Vlasov distribution functions consistent with stochastic dynamics
In a recent paper [A. D. Bailey et al., Phys. Rev. Lett. 34, 3124 (1993)], the authors presented direct planar laser induced fluorescence measurements of the oscillatory ion fluid velocity field in the presence of a large amplitude drift-Alfven wave. Surprisingly, the measured speeds were an order of magnitude lower than predicted by standard fluid theory, yet the flow pattern was consistent with the fluid theory. A new model, based on the connection between stochasticity and bulk behavior, is presented which gives insights into the cause of this behavior. It is shown that when particle motion is stochastic, invariant sets of a 'Poincaré map' define a flat-topped particle distribution function consistent with both the electromagnetic field driving the Vlasov equation and the fine-scale single particle dynamics. The approach is described for the general case and explored for a slab model of the observed drift wave
Room temperature electron spin coherence in telecom-wavelength quaternary quantum wells
Time-resolved Kerr rotation spectroscopy is used to monitor the room
temperature electron spin dynamics of optical telecommunication wavelength
AlInGaAs multiple quantum wells lattice-matched to InP. We found that electron
spin coherence times and effective g-factors vary as a function of aluminum
concentration. The measured electron spin coherence times of these multiple
quantum wells, with wavelengths ranging from 1.26 microns to 1.53 microns,
reach approximately 100 ps at room temperature, and the measured electron
effective g-factors are in the range from -2.3 to -1.1.Comment: 4 pages, 4 figure
The WISE AGN Catalog
We present two large catalogs of AGN candidates identified across ~75% of the
sky from the Wide-field Infrared Survey Explorer's AllWISE Data Release. Both
catalogs, some of the largest such catalogs published to date, are selected
purely on the basis of mid-IR photometry in the WISE W1 and W2 bands. The
catalogs are designed to be appropriate for a broad range of scientific
investigations, with one catalog emphasizing reliability while the other
emphasizes completeness. Specifically, the R90 catalog consists of 4,543,530
AGN candidates with 90% reliability, while the C75 catalog consists of
20,907,127 AGN candidates with 75% completeness. We provide a detailed
discussion of potential artifacts, and excise portions of the sky close to the
Galactic Center, Galactic Plane, nearby galaxies, and other expected
contaminating sources. Our final catalogs cover 30,093 deg^2 of extragalactic
sky. These catalogs are expected to enable a broad range of science, and we
present a few simple illustrative cases. From the R90 sample we identify 45
highly variable AGN lacking radio counterparts in the FIRST survey, implying
they are unlikely to be blazars. One of these sources, WISEA
J142846.71+172353.1, is a mid-IR-identified changing-look quasar at z=0.104. We
characterize our catalogs by comparing them to large, wide-area AGN catalogs in
the literature, specifically UV-to-near-IR quasar selections from SDSS and
XDQSOz, mid-IR selection from Secrest et al. (2015) and X-ray selection from
ROSAT. From the latter work, we identify four ROSAT X-ray sources that each are
matched to three WISE-selected AGN in the R90 sample within 30". Palomar
spectroscopy reveals one of these systems, 2RXS J150158.6+691029, to consist of
a triplet of quasars at z=1.133 +/- 0.004, suggestive of a rich group or
forming galaxy cluster.(Abridged)Comment: Accepted for publication in the Astrophysical Journal Supplements.
Updated with comments from the referee. 20 pages, 15 figures, 8 tables. The
WISE AGN Catalogs can be made available upon request by writing to
[email protected]
Old high-redshift galaxies and primordial density fluctuation spectra
We have discovered a population of extremely red galaxies at
which have apparent stellar ages of \gs 3 Gyr, based on detailed spectroscopy
in the rest-frame ultraviolet. In order for galaxies to have existed at the
high collapse redshifts indicated by these ages, there must be a minimum level
of power in the density fluctuation spectrum on galaxy scales. This paper
compares the required power with that inferred from other high-redshift
populations. If the collapse redshifts for the old red galaxies are in the
range -- 8, there is general agreement between the various
tracers on the required inhomogeneity on 1-Mpc scales. This level of
small-scale power requires the Lyman-limit galaxies to be approximately
fluctuations, implying a very large bias parameter .
The high collapse redshifts of the red galaxies as deduced from gravitational
collapse provides independent support for the ages estimated from their stellar
populations. Such early-forming galaxies are rare, and their contribution to
the cosmological stellar density is consistent with an extrapolation to higher
redshifts of the star-formation rate measured at ; there is no evidence
for a general era of spheroid formation at extreme redshifts.Comment: 9 Pages MNRAS in press. Uses MNRAS Plain TeX macro
- …
