33,338 research outputs found
Very high voltage latching relay
Relay consists of high voltage reed switch actuated by rotating permanent magnet mounted on stepper motor shaft, with actuation assembly isolated from high voltage circuit. Unit can be modified for use as double pole or double pole double throw latching relay and can be used in either air or vacuum
Starburst-driven galactic winds: I. Energetics and intrinsic X-ray emission
We have performed an extensive hydrodynamical parameter study of
starburst-driven galactic winds, motivated by the latest observation data on
the best-studied starburst galaxy M82. We study how the wind dynamics,
morphology and X-ray emission depend on the host galaxy's ISM distribution,
starburst star formation history and strength, and presence and distribution of
mass-loading by dense clouds. We find that the soft X-ray emission from
galactic winds comes from low filling factor (ff < 2 per cent) gas, which
contains only a small fraction (f < 10 per cent) of the mass and energy of the
wind, irrespective of whether the wind models are strongly mass-loaded or not.
X-ray observations of galactic winds therefore do not directly probe the gas
that contains the majority of the energy, mass or metal-enriched gas in the
outflow. The soft X-ray emission comes from gas at a wide range different
temperatures and densities. Estimates of the physical properties of the hot gas
in starburst galaxies, based on fitting the standard simple spectral models to
existing X-ray spectra, should therefore be treated with extreme suspicion. The
majority of the thermal and kinetic energy of these winds is in a volume
filling hot, T approx 10^7 K, component which is extremely difficult to probe
observationally due to its low density and hence low emissivity. Most of the
total energy is in the kinetic energy of this hot gas, a factor which must be
taken into account when attempting to constrain wind energetics
observationally. We also find that galactic winds are efficient at transporting
large amounts of energy out of the host galaxy, in contrast to their
inefficiency at transporting mass out of star-forming galaxies. (Abridged)Comment: Accepted for publication in MNRAS. Letter page size postscript
available from http://adcam.pha.jhu.edu/~dks/dks_published.htm
Simulating the Role of Stellar Rotation in the Spectroscopic Effects of Differential Limb Magnification
Finite-source effects of gravitationally microlensed stars have been well
discussed in the literature, but the role that stellar rotation plays has been
neglected. A differential magnification map applied to a differentially
Doppler-shifted surface alters the profiles of absorption lines, compromising
their ordinarily symmetric nature. Herein, we assess the degree to which this
finite-source effect of differential limb magnification (DLM), in combination
with stellar rotation, alters spectroscopically derived stellar properties. To
achieve this, we simulated a grid of high-magnification microlensing events
using synthetic spectra. Our analysis shows that rotation of the source
generates differences in the measured equivalent widths of absorption lines
supplementary to DLM alone, but only of the order of a few percent. Using the
wings of H alpha from the same simulated data, we confirmed the result of
Johnson et al. (2010) that DLM alters measurements of effective temperature by
< 100 K for dwarf stars, while showing rotation to bear no additional effect.Comment: Accepted for publication in PASA, 7 pages, 5 figures, 1 tabl
A three dimensional model of the Venusian thermosphere with superrotation
An improved three dimensional spectral model of the thermosphere of Venus is described. The model solves the Navier-Stokes equations and includes nonlinear effects for an arbitrary number of atmospheric species. A two dimensional axisymmetric model of the superrotation of the thermosphere is also presented. This model addresses the Pioneer-Venus mission finding, which suggested the thermospheric rotation rate to be much higher than that of the planet as seen from the asymmetric distribution of hydrogen and helium. Both models include the effects of an anisotropic eddy diffusion that is consistent with atmospheric mixing length theory
A flight investigation of performance and loads for a helicopter with NLR-1T main-rotor blade sections
Data on performance and rotor loads for a teetering-rotor, AH-1G helicopter flown with a main rotor that had the NLR-1T airfoil as the blade-section contour are presented. The test envelope included hover, forward-flight speed sweeps from 35 to 85 m/sec, and collective-fixed maneuvers at about 0.25 tip-speed ratio. The data set for each test point described vehicle flight state, control positions, rotor loads, power requirements, and blade motions. Rotor loads are reviewed primarily in terms of peak-to-peak and harmonic content. Lower frequency components predominated for most loads and generally increased with increased airspeed, but not necessarily with increased maneuver load factor
A flight investigation of blade section aerodynamics for a helicopter main rotor having NLR-1T airfoil sections
A flight investigation was conducted using a teetering-rotor AH-1G helicopter to obtain data on the aerodynamic behavior of main-rotor blades with the NLR-1T blade section. The data system recorded blade-section aerodynamic pressures at 90 percent rotor radius as well as vehicle flight state, performance, and loads. The test envelope included hover, forward flight, and collective-fixed maneuvers. Data were obtained on apparent blade-vortex interactions, negative lift on the advancing blade in high-speed flight and wake interactions in hover. In many cases, good agreement was achieved between chordwise pressure distributions predicted by airfoil theory and flight data with no apparent indications of blade-vortex interactions
Atmospheric planetary wave response to external forcing
The tools of observational analysis, complex general circulation modeling, and simpler modeling approaches were combined in order to attack problems on the largest spatial scales of the earth's atmosphere. Two different models were developed and applied. The first is a two level, global spectral model which was designed primarily to test the effects of north-south sea surface temperature anomaly (SSTA) gradients between the equatorial and midlatitude north Pacific. The model is nonlinear, contains both radiation and a moisture budget with associated precipitation and surface evaporation, and utilizes a linear balance dynamical framework. Supporting observational analysis of atmospheric planetary waves is briefly summarized. More extensive general circulation models have also been used to consider the problem of the atmosphere's response, especially in the horizontal propagation of planetary scale waves, to SSTA
Electrometer system measures nanoamps at high voltage
Floating electrometer eliminates major source of error since any leakage from electrometer case, which is at high voltage, appears only as load on high voltage supply and not as part of current being measured. Commands to and data from floating electrometer are transferred across high voltage interface by means of optical channels
Probing the wind-wind collision in Gamma Velorum with high-resolution Chandra X-ray spectroscopy: evidence for sudden radiative braking and non-equilibrium ionization
We present a new analysis of an archived Chandra HETGS X-ray spectrum of the
WR+O colliding wind binary Gamma Velorum. The spectrum is dominated by emission
lines from astrophysically abundant elements: Ne, Mg, Si, S and Fe. From a
combination of broad-band spectral analysis and an analysis of line flux ratios
we infer a wide range of temperatures in the X-ray emitting plasma (~4-40 MK).
As in the previously published analysis, we find the X-ray emission lines are
essentially unshifted, with a mean FWHM of 1240 +/- 30 km/s. Calculations of
line profiles based on hydrodynamical simulations of the wind-wind collision
predict lines that are blueshifted by a few hundred km/s. The lack of any
observed shift in the lines may be evidence of a large shock-cone opening
half-angle (> 85 degrees), and we suggest this may be evidence of sudden
radiative braking. From the R and G ratios measured from He-like
forbidden-intercombination-resonance triplets we find evidence that the Mg XI
emission originates from hotter gas closer to the O star than the Si XIII
emission, which suggests that non-equilibrium ionization may be present.Comment: 22 pages, 14 figures. Accepted for publication in MNRA
Design considerations for large space electric power systems
As power levels of spacecraft rise to the 50 to 100 kW range, it becomes apparent that low voltage (28 V) dc power distribution and management systems will not operate efficiently at these higher power levels. The concept of transforming a solar array voltage at 150 V dc into a 1000 V ac distribution system operating at 20 kHz is examined. The transformation is accomplished with series-resonant inverter by using a rotary transformer to isolate the solar array from the spacecraft. The power can then be distributed in any desired method such as three phase delta to delta. The distribution voltage can be easily transformed to any desired load voltage and operating frequency. The reasons for the voltage limitations on the solar array due to plasma interactions and the many advantages of a high voltage, high frequency at distribution system are discussed
- …
