3,935 research outputs found
Phase-locked magnetoconductance oscillations as a probe of Majorana edge states
We calculate the Andreev conductance of a superconducting ring interrupted by
a flux-biased Josephson junction, searching for electrical signatures of
circulating edge states. Two-dimensional pair potentials of spin-singlet d-wave
and spin-triplet p-wave symmetry support, respectively, (chiral) Dirac modes
and (chiral or helical) Majorana modes. These produce h/e-periodic
magnetoconductance oscillations of amplitude \simeq (e^{2}/h)N^{-1/2}, measured
via an N-mode point contact at the inner or outer perimeter of the grounded
ring. For Dirac modes the oscillations in the two contacts are independent,
while for an unpaired Majorana mode they are phase locked by a topological
phase transition at the Josephson junction.Comment: 10 pages, 6 figures. New appendix on the gauge invariant
discretization of the Bogoliubov-De Gennes equation. Accepted for publication
in PR
Interfaces Within Graphene Nanoribbons
We study the conductance through two types of graphene nanostructures:
nanoribbon junctions in which the width changes from wide to narrow, and curved
nanoribbons. In the wide-narrow structures, substantial reflection occurs from
the wide-narrow interface, in contrast to the behavior of the much studied
electron gas waveguides. In the curved nanoribbons, the conductance is very
sensitive to details such as whether regions of a semiconducting armchair
nanoribbon are included in the curved structure -- such regions strongly
suppress the conductance. Surprisingly, this suppression is not due to the band
gap of the semiconducting nanoribbon, but is linked to the valley degree of
freedom. Though we study these effects in the simplest contexts, they can be
expected to occur for more complicated structures, and we show results for
rings as well. We conclude that experience from electron gas waveguides does
not carry over to graphene nanostructures. The interior interfaces causing
extra scattering result from the extra effective degrees of freedom of the
graphene structure, namely the valley and sublattice pseudospins.Comment: 19 pages, published version, several references added, small changes
to conclusion
Observation of the spin Nernst effect
The observation of the spin Hall effect triggered intense research on pure
spin current transport. With the spin Hall effect, the spin Seebeck effect, and
the spin Peltier effect already observed, our picture of pure spin current
transport is almost complete. The only missing piece is the spin Nernst
(-Ettingshausen) effect, that so far has only been discussed on theoretical
grounds. Here, we report the observation of the spin Nernst effect. By applying
a longitudinal temperature gradient, we generate a pure transverse spin current
in a Pt thin film. For readout, we exploit the
magnetization-orientation-dependent spin transfer to an adjacent Yttrium Iron
Garnet layer, converting the spin Nernst current in Pt into a controlled change
of the longitudinal thermopower voltage. Our experiments show that the spin
Nernst and the spin Hall effect in Pt are of comparable magnitude, but differ
in sign, as corroborated by first-principles calculations
Quadrupole collectivity in neutron-deficient Sn nuclei: \nuc{104}{Sn} and the role of proton excitations
We report on the experimental study of quadrupole collectivity in the
neutron-deficient nucleus \nuc{104}{Sn} using intermediate-energy Coulomb
excitation. The value for the excitation of
the first state in \nuc{104}{Sn} has been measured to be
b relative to the well-known value of \nuc{102}{Cd}.
This result disagrees by more than one sigma with a recently published
measurement \cite{Gua13}. Our result indicates that the most modern many-body
calculations remain unable to describe the enhanced collectivity below
mid-shell in Sn approaching . We attribute the enhanced collectivity to
proton particle-hole configurations beyond the necessarily limited shell-model
spaces and suggest the asymmetry of the -value trend around mid-shell to
originate from enhanced proton excitations across as is
approached.Comment: Accepted for publication as rapid communication in Physical Review
Applications of Abundance Data and Requirements for Cosmochemical Modeling
Understanding the evolution of the universe from Big Bang to its present state requires an understanding of the evolution of the abundances of the elements and isotopes in galaxies, stars, the interstellar medium, the Sun and the heliosphere, planets and meteorites. Processes that change the state of the universe include Big Bang nucleosynthesis, star formation and stellar nucleosynthesis, galactic chemical evolution, propagation of cosmic rays, spallation, ionization and particle transport of interstellar material, formation of the solar system, solar wind emission and its fractionation (FIP/FIT effect), mixing processes in stellar interiors, condensation of material and subsequent geochemical fractionation. Here, we attempt to compile some major issues in cosmochemistry that can be addressed with a better knowledge of the respective element or isotope abundances. Present and future missions such as Genesis, Stardust, Interstellar Pathfinder, and Interstellar Probe, improvements of remote sensing instrumentation and experiments on extraterrestrial material such as meteorites, presolar grains, and lunar or returned planetary or cometary samples will result in an improved database of elemental and isotopic abundances. This includes the primordial abundances of D, ^3He, ^4He, and ^7Li, abundances of the heavier elements in stars and galaxies, the composition of the interstellar medium, solar wind and comets as well as the (highly) volatile elements in the solar system such as helium, nitrogen, oxygen or xenon
Spectroscopy of P using the one-proton knockout reaction
The structure of P was studied with a one-proton knockout reaction
at88~MeV/u from a S projectile beam at NSCL. The rays from
thedepopulation of excited states in P were detected with GRETINA,
whilethe P nuclei were identified event-by-event in the focal plane of
theS800 spectrograph. The level scheme of P was deduced up to 7.5 MeV
using coincidences. The observed levels were attributed to
protonremovals from the -shell and also from the deeply-bound
orbital.The orbital angular momentum of each state was derived from the
comparisonbetween experimental and calculated shapes of individual
(-gated)parallel momentum distributions. Despite the use of different
reactions andtheir associate models, spectroscopic factors, , derived
from theS knockout reaction agree with those obtained earlier
fromS(,\nuc{3}{He}) transfer, if a reduction factor , as
deducedfrom inclusive one-nucleon removal cross sections, is applied to the
knockout transitions.In addition to the expected proton-hole configurations,
other states were observedwith individual cross sections of the order of
0.5~mb. Based on their shiftedparallel momentum distributions, their decay
modes to negative parity states,their high excitation energy (around 4.7~MeV)
and the fact that they were notobserved in the (,\nuc{3}{He}) reaction, we
propose that they may resultfrom a two-step mechanism or a nucleon-exchange
reaction with subsequent neutronevaporation. Regardless of the mechanism, that
could not yet be clarified, thesestates likely correspond to neutron core
excitations in \nuc{35}{P}. Thisnewly-identified pathway, although weak, offers
the possibility to selectivelypopulate certain intruder configurations that are
otherwise hard to produceand identify.Comment: 5 figures, 1 table, accepted for publication in Physical Review
Observation of mutually enhanced collectivity in self-conjugate Sr
The lifetimes of the first 2 states in the neutron-deficient
Sr isotopes were measured using a unique combination of the
-ray line-shape method and two-step nucleon exchange reactions at
intermediate energies. The transition rates for the 2 states were
determined to be (E2;2) = 2220(270) efm for
Sr and 1800(250) efm for Sr, corresponding to large
deformation of = 0.45(3) for Sr and 0.40(3) for Sr. The
present data provide experimental evidence for mutually enhanced collectivity
that occurs at = = 38. The systematic behavior of the excitation
energies and (E2) values indicates a signature of shape coexistence in
Sr, characterizing Sr as one of most deformed nuclei with an
unusually reduced (4)/(2) ratio.Comment: Accepted for publication in Physical Review C Rapid Communicatio
Zero-voltage conductance peak from weak antilocalization in a Majorana nanowire
We show that weak antilocalization by disorder competes with resonant Andreev
reflection from a Majorana zero-mode to produce a zero-voltage conductance peak
of order e^2/h in a superconducting nanowire. The phase conjugation needed for
quantum interference to survive a disorder average is provided by particle-hole
symmetry - in the absence of time-reversal symmetry and without requiring a
topologically nontrivial phase. We identify methods to distinguish the Majorana
resonance from the weak antilocalization effect.Comment: 13 pages, 8 figures. Addendum, February 2014: Appendix B shows
results for weak antilocalization in the circular ensemble. (This appendix is
not in the published version.
Mirror Energy Differences at Large Isospin Studied through Direct Two-Nucleon Knockout
The first spectroscopy of excited states in 52Ni (Tz=2) and 51Co (Tz=-3/2)
has been obtained using the highly selective two-neutron knockout reaction.
Mirror energy differences between isobaric analogue states in these nuclei and
their mirror partners are interpreted in terms of isospin nonconserving
effects. A comparison between large scale shell-model calculations and data
provides the most compelling evidence to date that both electromagnetic and an
additional isospin nonconserving interactions for J=2 couplings, of unknown
origin, are required to obtain good agreement.Comment: Accepted for publication in Physical Review Letter
- …
