35,744 research outputs found
Modelling of Reflective Propagating Slow-mode Wave in a Flaring Loop
Quasi-periodic propagating intensity disturbances have been observed in large
coronal loops in EUV images over a decade, and are widely accepted to be slow
magnetosonic waves. However, spectroscopic observations from Hinode/EIS
revealed their association with persistent coronal upflows, making this
interpretation debatable. We perform a 2.5D magnetohydrodynamic simulation to
imitate the chromospheric evaporation and the following reflected patterns in a
flare loop. Our model encompasses the corona, transition region, and
chromosphere. We demonstrate that the quasi periodic propagating intensity
variations captured by the synthesized \textit{Solar Dynamics
Observatory}/Atmospheric Imaging Assembly (AIA) 131, 94~\AA~emission images
match the previous observations well. With particle tracers in the simulation,
we confirm that these quasi periodic propagating intensity variations consist
of reflected slow mode waves and mass flows with an average speed of 310 km/s
in an 80 Mm length loop with an average temperature of 9 MK. With the
synthesized Doppler shift velocity and intensity maps of the \textit{Solar and
Heliospheric Observatory}/Solar Ultraviolet Measurement of Emitted Radiation
(SUMER) Fe XIX line emission, we confirm that these reflected slow mode waves
are propagating waves.Comment: 10 pages, 5 figure
A Model for Solid He: II
We propose a simple Ginzburg-Landau free energy to describe the magnetic
phase transition in solid He. The free energy is analyzed with due
consideration of the hard first order transitions at low magnetic fields. The
resulting phase diagram contains all of the important features of the
experimentally observed ph ase diagram. The free energy also yields a critical
field at which the transition from the disordered state to the high field state
changes from a first order to a second order one.Comment: This paper has been accepted for publication in Journal of Low
Temperature Physics. Use regular Tex, with the D. Eardley version of Macros
called jnl.tex. 10 pages, 4 figs available from [email protected]
High resolution, low temperature photoabsorption cross-section of C2H2 with application to Saturn's atmosphere
New laboratory observations of the VUV absorption cross-section of C2H2, obtained under physical conditions approximating stratospheres of the giant planets, were combined with IUE observations of the albedo of Saturn, for which improved data reduction techniques have been used, to produce new models for that atmosphere. When the effects of C2H2 absorption are accounted for, additional absorption by other molecules is required. The best-fitting model also includes absorption by PH3, H2O, C2H6 and CH4. A small residual disagreement near 1600 A suggests that an additional trace species may be required to complete the model
Mixing by polymers: experimental test of decay regime of mixing
By using high molecular weight fluorescent passive tracers with different
diffusion coefficients and by changing the fluid velocity we study dependence
of a characteristic mixing length on the Peclet number, , which controls
the mixing efficiency. The mixing length is found to be related to by a
power law, , and increases faster than
expected for an unbounded chaotic flow. Role of the boundaries in the mixing
length abnormal growth is clarified. The experimental findings are in a good
quantitative agreement with the recent theoretical predictions.Comment: 4 pages,5 figures. accepted for publication in PR
Adversarial Sparse-View CBCT Artifact Reduction
We present an effective post-processing method to reduce the artifacts from
sparsely reconstructed cone-beam CT (CBCT) images. The proposed method is based
on the state-of-the-art, image-to-image generative models with a perceptual
loss as regulation. Unlike the traditional CT artifact-reduction approaches,
our method is trained in an adversarial fashion that yields more perceptually
realistic outputs while preserving the anatomical structures. To address the
streak artifacts that are inherently local and appear across various scales, we
further propose a novel discriminator architecture based on feature pyramid
networks and a differentially modulated focus map to induce the adversarial
training. Our experimental results show that the proposed method can greatly
correct the cone-beam artifacts from clinical CBCT images reconstructed using
1/3 projections, and outperforms strong baseline methods both quantitatively
and qualitatively
A large-scale proteogenomics study of apicomplexan pathogens-Toxoplasma gondii and Neospora caninum
Proteomics data can supplement genome annotation efforts, for example being used to confirm gene models or correct gene annotation errors. Here, we present a large‐scale proteogenomics study of two important apicomplexan pathogens: Toxoplasma gondii and Neospora caninum. We queried proteomics data against a panel of official and alternate gene models generated directly from RNASeq data, using several newly generated and some previously published MS datasets for this meta‐analysis. We identified a total of 201 996 and 39 953 peptide‐spectrum matches for T. gondii and N. caninum, respectively, at a 1% peptide FDR threshold. This equated to the identification of 30 494 distinct peptide sequences and 2921 proteins (matches to official gene models) for T. gondii, and 8911 peptides/1273 proteins for N. caninum following stringent protein‐level thresholding. We have also identified 289 and 140 loci for T. gondii and N. caninum, respectively, which mapped to RNA‐Seq‐derived gene models used in our analysis and apparently absent from the official annotation (release 10 from EuPathDB) of these species. We present several examples in our study where the RNA‐Seq evidence can help in correction of the current gene model and can help in discovery of potential new genes
- …
