413 research outputs found
Reaching optimally oriented molecular states by laser kicks
We present a strategy for post-pulse orientation aiming both at efficiency
and maximal duration within a rotational period. We first identify the
optimally oriented states which fulfill both requirements. We show that a
sequence of half-cycle pulses of moderate intensity can be devised for reaching
these target states.Comment: 4 pages, 3 figure
Field-free two-direction alignment alternation of linear molecules by elliptic laser pulses
We show that a linear molecule subjected to a short specific elliptically
polarized laser field yields postpulse revivals exhibiting alignment
alternatively located along the orthogonal axis and the major axis of the
ellipse. The effect is experimentally demonstrated by measuring the optical
Kerr effect along two different axes. The conditions ensuring an optimal
field-free alternation of high alignments along both directions are derived.Comment: 5 pages, 4 color figure
Laser control for the optimal evolution of pure quantum states
Starting from an initial pure quantum state, we present a strategy for
reaching a target state corresponding to the extremum (maximum or minimum) of a
given observable. We show that a sequence of pulses of moderate intensity,
applied at times when the average of the observable reaches its local or global
extremum, constitutes a strategy transferable to different control issues.
Among them, post-pulse molecular alignment and orientation are presented as
examples. The robustness of such strategies with respect to experimentally
relevant parameters is also examined.Comment: 16 pages, 9 figure
Optimized time-dependent perturbation theory for pulse-driven quantum dynamics in atomic or molecular systems
We present a time-dependent perturbative approach adapted to the treatment of
intense pulsed interactions. We show there is a freedom in choosing secular
terms and use it to optimize the accuracy of the approximation. We apply this
formulation to a unitary superconvergent technique and improve the accuracy by
several orders of magnitude with respect to the Magnus expansion.Comment: 4 pages, 2 figure
Unitary time-dependent superconvergent technique for pulse-driven quantum dynamics
We present a superconvergent Kolmogorov-Arnold-Moser type of perturbation theory for time-dependent Hamiltonians. It is strictly unitary upon truncation at an arbitrary order and not restricted to periodic or quasiperiodic Hamiltonians. Moreover, for pulse-driven systems we construct explicitly the KAM transformations involved in the iterative procedure. The technique is illustrated on a two-level model perturbed by a pulsed interaction for which we obtain convergence all the way from the sudden regime to the opposite adiabatic regime
Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights
We study a model of non-intersecting squared Bessel processes in the
confluent case: all paths start at time at the same positive value , remain positive, and are conditioned to end at time at . In
the limit , after appropriate rescaling, the paths fill out a
region in the -plane that we describe explicitly. In particular, the paths
initially stay away from the hard edge at , but at a certain critical
time the smallest paths hit the hard edge and from then on are stuck to
it. For we obtain the usual scaling limits from random matrix
theory, namely the sine, Airy, and Bessel kernels. A key fact is that the
positions of the paths at any time constitute a multiple orthogonal
polynomial ensemble, corresponding to a system of two modified Bessel-type
weights. As a consequence, there is a matrix valued
Riemann-Hilbert problem characterizing this model, that we analyze in the large
limit using the Deift-Zhou steepest descent method. There are some novel
ingredients in the Riemann-Hilbert analysis that are of independent interest.Comment: 59 pages, 11 figure
Time-dependent unitary perturbation theory for intense laser driven molecular orientation
We apply a time-dependent perturbation theory based on unitary
transformations combined with averaging techniques, on molecular orientation
dynamics by ultrashort pulses. We test the validity and the accuracy of this
approach on LiCl described within a rigid-rotor model and find that it is more
accurate than other approximations. Furthermore, it is shown that a noticeable
orientation can be achieved for experimentally standard short laser pulses of
zero time average. In this case, we determine the dynamically relevant
parameters by using the perturbative propagator, that is derived from this
scheme, and we investigate the temperature effects on the molecular orientation
dynamics.Comment: 16 pages, 6 figure
Simple deterministic dynamical systems with fractal diffusion coefficients
We analyze a simple model of deterministic diffusion. The model consists of a
one-dimensional periodic array of scatterers in which point particles move from
cell to cell as defined by a piecewise linear map. The microscopic chaotic
scattering process of the map can be changed by a control parameter. This
induces a parameter dependence for the macroscopic diffusion coefficient. We
calculate the diffusion coefficent and the largest eigenmodes of the system by
using Markov partitions and by solving the eigenvalue problems of respective
topological transition matrices. For different boundary conditions we find that
the largest eigenmodes of the map match to the ones of the simple
phenomenological diffusion equation. Our main result is that the difffusion
coefficient exhibits a fractal structure by varying the system parameter. To
understand the origin of this fractal structure, we give qualitative and
quantitative arguments. These arguments relate the sequence of oscillations in
the strength of the parameter-dependent diffusion coefficient to the
microscopic coupling of the single scatterers which changes by varying the
control parameter.Comment: 28 pages (revtex), 12 figures (postscript), submitted to Phys. Rev.
Pulse-driven quantum dynamics beyond the impulsive regime
We review various unitary time-dependent perturbation theories and compare
them formally and numerically. We show that the Kolmogorov-Arnold-Moser
technique performs better owing to both the superexponential character of
correction terms and the possibility to optimize the accuracy of a given level
of approximation which is explored in details here. As an illustration, we
consider a two-level system driven by short pulses beyond the sudden limit.Comment: 15 pages, 5 color figure
- …
