2,495 research outputs found
Tunneling into the normal state of Pr(2-x)CexCuO4
The temperature dependence of the tunneling conductance was measured for
various doping levels of Pr(2-x)CexCuO4 using planar junctions. A normal state
gap is seen at all doping levels studied, x=0.11 to x=0.19. We find it to
vanish above a certain temperature T*. T* is greater than Tc for the underdoped
region and it follows Tc on the overdoped side. This behavior suggests finite
pairing amplitude above Tc on the underdoped side
Role of oxygen in the electron-doped superconducting cuprates
We report on resistivity and Hall measurements in thin films of the
electron-doped superconducting cuprate PrCeCuO.
Comparisons between x = 0.17 samples subjected to either ion-irradiation or
oxygenation demonstrate that changing the oxygen content has two separable
effects: 1) a doping effect similar to that of cerium, and 2) a disorder
effect. These results are consistent with prior speculations that apical oxygen
removal is necessary to achieve superconductivity in this compound.Comment: 5 pages, 5 figure
Field Induced Nodal Order Parameter in the Tunneling Spectrum of YBaCuO Superconductor
We report planar tunneling measurements on thin films of
YBaCuO at various doping levels under magnetic fields. By
choosing a special setup configuration, we have probed a field induced energy
scale that dominates in the vicinity of a node of the d-wave superconducting
order parameter. We found a high doping sensitivity for this energy scale. At
Optimum doping this energy scale is in agreement with an induced
order parameter. We found that it can be followed down to low fields at optimum
doping, but not away from it.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
On the resistivity at low temperatures in electron-doped cuprate superconductors
We measured the magnetoresistance as a function of temperature down to 20mK
and magnetic field for a set of underdoped PrCeCuO (x=0.12) thin films with
controlled oxygen content. This allows us to access the edge of the
superconducting dome on the underdoped side. The sheet resistance increases
with increasing oxygen content whereas the superconducting transition
temperature is steadily decreasing down to zero. Upon applying various magnetic
fields to suppress superconductivity we found that the sheet resistance
increases when the temperature is lowered. It saturates at very low
temperatures. These results, along with the magnetoresistance, cannot be
described in the context of zero temperature two dimensional
superconductor-to-insulator transition nor as a simple Kondo effect due to
scattering off spins in the copper-oxide planes. We conjecture that due to the
proximity to an antiferromagnetic phase magnetic droplets are induced. This
results in negative magnetoresistance and in an upturn in the resistivity.Comment: Accepted in Phys. Rev.
Remarkable change of tunneling conductance in YBCO films in fields up to 32.4T
We studied the tunneling density of states in YBCO films under strong
currents flowing along node directions. The currents were induced by fields of
up to 32.4T parallel to the film surface and perpendicular to the
planes. We observed a remarkable change in the tunneling conductance at high
fields where the gap-like feature shifts discontinuously from 15meV to a lower
bias of 11meV, becoming more pronounced as the field increases. The effect
takes place in increasing fields around 9T and the transition back to the
initial state occurs around 5T in decreasing fields. We argue that this
transition is driven by surface currents induced by the applied magnetic field.Comment: 4 pages, 7 figure
Evidence for a quantum phase transition in the electron-doped cuprate Pr2-xCexCuO4+d from Hall and resistivity measurements
The doping and temperature dependence of the Hall coefficient, RH, and
ab-plane resistivity in the normal state down to 350mK is reported for oriented
films of the electron-doped high-Tc superconductor Pr2-xCexCuO4+d. The doping
dependence of b (r=r0+AT^b) and R_sub_H (at 350 mK) suggest a quantum phase
transition at a critical doping near x=0.165.Comment: 11 pages 4 figures Phys. Rev. Lett. 92, 167001 (2004
Local and macroscopic tunneling spectroscopy of Y(1-x)CaxBa2Cu3O(7-d) films: evidence for a doping dependent is or idxy component in the order parameter
Tunneling spectroscopy of epitaxial (110) Y1-xCaxBa2Cu3O7-d films reveals a
doping dependent transition from pure d(x2-y2) to d(x2-y2)+is or d(x2-y2)+idxy
order parameter. The subdominant (is or idxy) component manifests itself in a
splitting of the zero bias conductance peak and the appearance of subgap
structures. The splitting is seen in the overdoped samples, increases
systematically with doping, and is found to be an inherent property of the
overdoped films. It was observed in both local tunnel junctions, using scanning
tunneling microscopy (STM), and in macroscopic planar junctions, for films
prepared by either RF sputtering or laser ablation. The STM measurements
exhibit fairly uniform splitting size in [110] oriented areas on the order of
10 nm2 but vary from area to area, indicating some doping inhomogeneity. U and
V-shaped gaps were also observed, with good correspondence to the local
faceting, a manifestation of the dominant d-wave order parameter
Infrared Properties of Electron Doped Cuprates: Tracking Normal State Gaps and Quantum Critical Behavior in Pr(2-x)Ce(x)CuO(4)
We report the temperature dependence of the infrared-visible conductivity of
Pr(2-x)Ce(x)CuO(4) thin films. When varying the doping from a
non-superconducting film (x = 0.11) to a superconducting overdoped film (x =
0.17), we observe, up to optimal doping (x = 0.15), a partial gap opening. A
model combining a spin density wave gap and a frequency and temperature
dependent self energy reproduces our data reasonably well. The magnitude of
this gap extrapolates to zero for x ~ 0.17 indicating the coexistence of
magnetism and superconductivity in this material and the existence of a quantum
critical point at this Ce concentration.Comment: 5 pages 6 figures include
- …
