2,279 research outputs found
Effect of tillage practices on the soil carbon dioxide flux during fall and spring seasons in a Mediterranean Vertisol
In this study, we assessed the effect of conventional tillage (CT), reduced (RT) and no tillage (NT) practices on the soil CO2 flux of a Mediterranean Vertisol in semi-arid Morocco. The measurements focused on the short term (0 to 96 h) soil CO2 fluxes measured directly after tillage during the fall and spring period. Soil temperature, moisture and soil strength were measured congruently to study their effect on the soil CO2 flux magnitude. Immediately after fall tillage, the CT showed the highest CO2 flux (4.9 g m-2 h-1); RT exhibited an intermediate value (2.1 g m-2 h-1) whereas the lowest flux (0.7 g m-2 h-1) was reported under NT. After spring tillage, similar but smaller impacts of the tillage practices on soil CO2 flux were reported with fluxes ranging from 1.8 g CO2 m-2 h-1 (CT) to less than 0.1 g CO2 m-2 h-1 (NT). Soil strength was significantly correlated with soil CO2 emission; whereas surface soil temperature and moisture were low correlated to the soil CO2 flux. The intensity of rainfall events before fall and spring tillage practices could explain the seasonal CO2 flux trends. The findings promote conservation tillage and more specifically no tillage practices to reduce CO2 losses within these Mediterranean agroecosystems. (Résumé d'auteur
Dipole and Bloch oscillations of cold atoms in a parabolic lattice
The paper studies the dynamics of a Bose-Einstein condensate loaded into a 1D
parabolic optical lattice, and excited by a sudden shift of the lattice center.
Depending on the magnitude of the initial shift, the condensate undergoes
either dipole or Bloch oscillations. The effects of dephasing and of atom-atom
interactions on these oscillations are discussed.Comment: 3 pages, to appear in proceeding of LPHYS'05 conference (July 4-8,
2005, Kyoto, Japan
A mapping approach to synchronization in the "Zajfman trap": stability conditions and the synchronization mechanism
We present a two particle model to explain the mechanism that stabilizes a
bunch of positively charged ions in an "ion trap resonator" [Pedersen etal,
Phys. Rev. Lett. 87 (2001) 055001]. The model decomposes the motion of the two
ions into two mappings for the free motion in different parts of the trap and
one for a compressing momentum kick. The ions' interaction is modelled by a
time delay, which then changes the balance between adjacent momentum kicks.
Through these mappings we identify the microscopic process that is responsible
for synchronization and give the conditions for that regime.Comment: 12 pages, 9 figures; submitted to Phys Rev
Mapping adaptation of barley to droughted environments
Identifying barley genomic regions influencing the response of yield and its components to water deficits will aid in our understanding of the genetics of drought tolerance and the development of more drought tolerant cultivars. We assembled a population of 192 genotypes that represented landraces, old, and contemporary cultivars sampling key regions around the Mediterranean basin and the rest of Europe. The population was genotyped with a stratified set of 50 genomic and EST derived molecular markers, 49 of which were Simple Sequence Repeats (SSRs), which revealed an underlying population sub-structure that corresponded closely to the geographic regions in which the genotypes were grown. A more dense whole genome scan was generated by using Diversity Array Technology (DArT®) to generate 1130 biallelic markers for the population. The population was grown at two contrasting sites in each of seven Mediterranean countries for harvest 2004 and 2005 and grain yield data collected. Mean yield levels ranged from 0.3 to 6.2 t/ha, with highly significant genetic variation in low-yielding environments. Associations of yield with barley genomic regions were then detected by combining the DArT marker data with the yield data in mixed model analyses for the individual trials, followed by multiple regression of yield on markers to identify a multi-locus subset of significant markers/QTLs. QTLs exhibiting a pre-defined consistency across environments were detected in bins 4, 6, 6 and 7 on barley chromosomes 3H, 4H, 5H and 7H respectivel
Periodically-dressed Bose-Einstein condensates: a superfluid with an anisotropic and variable critical velocity
Two intersecting laser beams can produce a spatially-periodic coupling
between two components of an atomic gas and thereby modify the dispersion
relation of the gas according to a dressed-state formalism. Properties of a
Bose-Einstein condensate of such a gas are strongly affected by this
modification. A Bogoliubov transformation is presented which accounts for
interparticle interactions to obtain the quasiparticle excitation spectrum in
such a condensate. The Landau critical velocity is found to be anisotropic and
can be widely tuned by varying properties of the dressing laser beams.Comment: 5 pages, 4 figure
Wavepacket reconstruction via local dynamics in a parabolic lattice
We study the dynamics of a wavepacket in a potential formed by the sum of a
periodic lattice and of a parabolic potential. The dynamics of the wavepacket
is essentially a superposition of ``local Bloch oscillations'', whose frequency
is proportional to the local slope of the parabolic potential. We show that the
amplitude and the phase of the Fourier transform of a signal characterizing
this dynamics contains information about the amplitude and the phase of the
wavepacket at a given lattice site. Hence, {\em complete} reconstruction of the
the wavepacket in the real space can be performed from the study of the
dynamics of the system.Comment: 4 pages, 3 figures, RevTex
Bloch-Like Quantum Multiple Reflections of Atoms
We show that under certain circumstances an atom can follow an oscillatory
motion in a periodic laser profile with a Gaussian envelope. These oscillations
can be well explained by using a model of energetically forbidden spatial
regions. The similarities and differences with Bloch oscillations are
discussed. We demonstrate that the effect exists not only for repulsive but
also for attractive potentials, i.e. quantum multiple reflections are also
possible.Comment: LaTeX, 7 pages, 7 figure
Sugarcoated isolation: Evidence that social avoidance is linked to higher basal glucose levels and higher consumption of glucose
Objective: The human brain adjusts its level of effort in coping with various life stressors as a partial function of perceived access to social resources. We examined whether people who avoid social ties maintain a higher fasting basal level of glucose in their bloodstream, reflecting a strategy to draw more on personal resources when threatened.Methods: For Study 1, we obtained fasting blood glucose and adult attachment orientations data from 60 undergraduate women at the University of Virginia. For Study 2, we collected measures of fasting blood glucose, self-reported trait anxiety, DHEA-cortisol, hypertension, and adult attachment orientations from 285 older adults of mixed gender, using a measure of attachment style different from study 1.Results: In study 1, fasting blood glucose levels corresponded with higher attachment avoidance scores after statistically adjusting for interpersonal anxiety. For study 2, fasting blood glucose continued to correspond with higher adult attachment avoidance even after statistically adjusting for interpersonal anxiety, trait anxiety, DHEA-cortisol and hypertension. Conclusions: Results suggest socially avoidant individuals upwardly adjust their basal glucose levels with the expectation of increased personal effort because of limited access to social resources
Forecasting in the light of Big Data
Predicting the future state of a system has always been a natural motivation
for science and practical applications. Such a topic, beyond its obvious
technical and societal relevance, is also interesting from a conceptual point
of view. This owes to the fact that forecasting lends itself to two equally
radical, yet opposite methodologies. A reductionist one, based on the first
principles, and the naive inductivist one, based only on data. This latter view
has recently gained some attention in response to the availability of
unprecedented amounts of data and increasingly sophisticated algorithmic
analytic techniques. The purpose of this note is to assess critically the role
of big data in reshaping the key aspects of forecasting and in particular the
claim that bigger data leads to better predictions. Drawing on the
representative example of weather forecasts we argue that this is not generally
the case. We conclude by suggesting that a clever and context-dependent
compromise between modelling and quantitative analysis stands out as the best
forecasting strategy, as anticipated nearly a century ago by Richardson and von
Neumann
Superfluid Dynamics of a Bose-Einstein Condensate in a Periodic Potential
We investigate the superfluid properties of a Bose-Einstein condensate (BEC)
trapped in a one dimensional periodic potential. We study, both analytically
(in the tight binding limit) and numerically, the Bloch chemical potential, the
Bloch energy and the Bogoliubov dispersion relation, and we introduce {\it two}
different, density dependent, effective masses and group velocities. The
Bogoliubov spectrum predicts the existence of sound waves, and the arising of
energetic and dynamical instabilities at critical values of the BEC
quasi-momentum which dramatically affect its coherence properties. We
investigate the dependence of the dipole and Bloch oscillation frequencies in
terms of an effective mass averaged over the density of the condensate. We
illustrate our results with several animations obtained solving numerically the
time-dependent Gross-Pitaevskii equation.Comment: 13 pages, 7 figures, movies and published paper available at
http://www.iop.org/EJ/abstract/1367-2630/5/1/11
- …
