2,748 research outputs found

    Religious Seriousness: A Lesson from Postcommunist Europe

    Full text link

    Polymer solid acid composite membranes for fuel-cell applications

    Get PDF
    A systematic study of the conductivity of polyvinylidene fluoride (PVDF) and CsHSO4 composites, containing 0 to 100% CsHSO4, has been carried out. The polymer, with its good mechanical properties, served as a supporting matrix for the high proton conductivity inorganic phase. The conductivity of composites exhibited a sharp increase with temperature at 142°C, characteristic of the superprotonic phase transition of CsHSO4. At high temperature (160°C), the dependence of conductivity on vol % CsHSO4 was monotonic and revealed a percolation threshold of ~10 vol %. At low temperature (100°C), a maximum in the conductivity at ~80 vol % CsHSO4 was observed. Results of preliminary fuel cell measurements are presented

    Alcohol Fuel Cells at Optimal Temperatures

    Get PDF
    High-power-density alcohol fuel cells can relieve many of the daunting challenges facing a hydrogen energy economy. Here, such fuel cells are achieved using CsH2PO4 as the electrolyte and integrating into the anode chamber a Cu-ZnO/Al2O3 methanol steam-reforming catalyst. The temperature of operation, ~250°C, is matched both to the optimal value for fuel cell power output and for reforming. Peak power densities using methanol and ethanol were 226 and 100 mW/cm^2, respectively. The high power output (305 mW/cm^2) obtained from reformate fuel containing 1% CO demonstrates the potential of this approach with optimized reforming catalysts and also the tolerance to CO poisoning at these elevated temperatures

    The Role of Internalized Homonegativity in the Faith and Psychological Health of Lesbians

    Get PDF
    Among lesbians, faith-based beliefs and behaviors may be associated with negative psychological health due to the interplay between religious and sexual identities. The present study examined health outcomes, faith-based beliefs (views of God as loving and controlling), faith-based behaviors (personal spiritual practices, religious activities), and internalized homonegativity in a sample of 225 self-identified lesbians. We hypothesized that internalized homonegativity would moderate the relationship between health outcomes and faith-based beliefs and behaviors among lesbians. Generally, results indicated that some faith-based beliefs and behaviors were related to negative health outcomes among lesbians with higher levels of internalized homonegativity, but among those with lower levels of internalized homonegativity, the negative associations with health were mitigated

    Initial B Cell Activation Induces Metabolic Reprogramming and Mitochondrial Remodeling.

    Get PDF
    B lymphocytes provide adaptive immunity by generating antigen-specific antibodies and supporting the activation of T cells. Little is known about how global metabolism supports naive B cell activation to enable an effective immune response. By coupling RNA sequencing (RNA-seq) data with glucose isotopomer tracing, we show that stimulated B cells increase programs for oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and nucleotide biosynthesis, but not glycolysis. Isotopomer tracing uncovered increases in TCA cycle intermediates with almost no contribution from glucose. Instead, glucose mainly supported the biosynthesis of ribonucleotides. Glucose restriction did not affect B cell functions, yet the inhibition of OXPHOS or glutamine restriction markedly impaired B cell growth and differentiation. Increased OXPHOS prompted studies of mitochondrial dynamics, which revealed extensive mitochondria remodeling during activation. Our results show how B cell metabolism adapts with stimulation and reveals unexpected details for carbon utilization and mitochondrial dynamics at the start of a humoral immune response

    Emergency Department Pain Management Following Implementation of a Geriatric Hip Fracture Program

    Get PDF
    Introduction: Over 300,000 patients in the United States sustain low-trauma fragility hip fractures annually. Multidisciplinary geriatric fracture programs (GFP) including early, multimodal pain management reduce morbidity and mortality. Our overall goal was to determine the effects of a GFP on the emergency department (ED) pain management of geriatric fragility hip fractures. Methods: We performed a retrospective study including patients age ≥65 years with fragility hip fractures two years before and two years after the implementation of the GFP. Outcomes were time to (any) first analgesic, use of acetaminophen and fascia iliaca compartment block (FICB) in the ED, and amount of opioid medication administered in the first 24 hours. We used permutation tests to evaluate differences in ED pain management following GFP implementation. Results: We studied 131 patients in the pre-GFP period and 177 patients in the post-GFP period. In the post-GFP period, more patients received FICB (6% vs. 60%; difference 54%, 95% confidence interval [CI] 45–63%; p<0.001) and acetaminophen (10% vs. 51%; difference 41%, 95% CI 32–51%; p<0.001) in the ED. Patients in the post-GFP period also had a shorter time to first analgesic (103 vs. 93 minutes; p=0.04) and received fewer morphine equivalents in the first 24 hours (15mg vs. 10mg, p<0.001) than patients in the pre-GFP period. Conclusion: Implementation of a GFP was associated with improved ED pain management for geriatric patients with fragility hip fractures. Future studies should evaluate the effects of these changes in pain management on longer-term outcomes

    Coarse-graining protein energetics in sequence variables

    Full text link
    We show that cluster expansions (CE), previously used to model solid-state materials with binary or ternary configurational disorder, can be extended to the protein design problem. We present a generalized CE framework, in which properties such as energy can be unambiguously expanded in the amino-acid sequence space. The CE coarse grains over nonsequence degrees of freedom (e.g., side-chain conformations) and thereby simplifies the problem of designing proteins, or predicting the compatibility of a sequence with a given structure, by many orders of magnitude. The CE is physically transparent, and can be evaluated through linear regression on the energies of training sequences. We show, as example, that good prediction accuracy is obtained with up to pairwise interactions for a coiled-coil backbone, and that triplet interactions are important in the energetics of a more globular zinc-finger backbone.Comment: 10 pages, 3 figure

    Network connectivity during mergers and growth: optimizing the addition of a module

    Full text link
    The principal eigenvalue λ\lambda of a network's adjacency matrix often determines dynamics on the network (e.g., in synchronization and spreading processes) and some of its structural properties (e.g., robustness against failure or attack) and is therefore a good indicator for how ``strongly'' a network is connected. We study how λ\lambda is modified by the addition of a module, or community, which has broad applications, ranging from those involving a single modification (e.g., introduction of a drug into a biological process) to those involving repeated additions (e.g., power-grid and transit development). We describe how to optimally connect the module to the network to either maximize or minimize the shift in λ\lambda, noting several applications of directing dynamics on networks.Comment: 7 pages, 5 figure
    corecore