12,398 research outputs found

    Non-equilibrium inelastic electronic transport: Polarization effects and vertex corrections to the self-consistent Born approximation

    Full text link
    We study the effect of electron-vibron interactions on the inelastic transport properties of single-molecule nanojunctions. We use the non-equilibrium Green's functions technique and a model Hamiltonian to calculate the effects of second-order diagrams (double-exchange DX and dressed-phonon DPH diagrams) on the electron-vibration interaction and consider their effects across the full range of parameter space. The DX diagram, corresponding to a vertex correction, introduces an effective dynamical renormalization of the electron-vibron coupling in both the purely inelastic and the inelastic-resonant features of the IETS. The purely inelastic features correspond to an applied bias around the energy of a vibron, while the inelastic-resonant features correspond to peaks (resonance) in the conductance. The DPH diagram affects only the inelastic resonant features. We also discuss the circumstances in which the second-order diagrams may be approximated in the study of more complex model systems.Comment: To be published in PR

    Overlapping Coalition Formation for Efficient Data Fusion in Multi-Sensor Networks

    No full text
    This paper develops new algorithms for coalition formation within multi-sensor networks tasked with performing wide-area surveillance. Specifically, we cast this application as an instance of coalition formation, with overlapping coalitions. We show that within this application area sub-additive coalition valuations are typical, and we thus use this structural property of the problem to we derive two novel algorithms (an approximate greedy one that operates in polynomial time and has a calculated bound to the optimum, and an optimal branch-and-bound one) to find the optimal coalition structure in this instance. We empirically evaluate the performance of these algorithms within a generic model of a multi-sensor network performing wide area surveillance. These results show that the polynomial algorithm typically generated solutions much closer the optimal than the theoretical bound, and prove the effectiveness of our pruning procedure

    An investigation on texture property correlation in annealed CP-Titanium

    Get PDF
    Rapid industrial development and advances in the fields of engineering and related technologies during the last five decades have led to the extensive use of traditional metals and their alloy counterparts. Ti is one such metal which has gained popularity in the aerospace and defence related applications due to its wide range of mechanical properties like excellent specific strength , stiffness, corrosion and erosion resistance, fracture toughness and capability to withstand significant temperature variations. The present investigation is a step at correlating the crystallographic orientation and mechanical properties of commercially pure Ti (CP-Ti). Annealed CP-Ti specimens were prepared along the rolling direction, perpendicular to the rolling direction and 45o to the rolling direction. The specimens were then deformed to failure under uniaxial tension test in tensile test. Crystallographic textures of the specimens were measured before and after tensile deformation. Correlation of texture and mechanical properties was investigated. Subsequently, hardness of different grains/orientations of CP-Ti was measured through nano-indentation, grain average misorientation, elastic stiffness and Taylor factor measurement

    Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes

    Get PDF
    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface

    Pilot's Automated Weather Support System (PAWSS) concepts demonstration project. Phase 1: Pilot's weather information requirements and implications for weather data systems design

    Get PDF
    The weather information requirements for pilots and the deficiencies of the current aviation weather support system in meeting these requirements are defined. As the amount of data available to pilots increases significantly in the near future, expert system technology will be needed to assist pilots in assimilating that information. Some other desirable characteristics of an automation-assisted system for weather data acquisition, dissemination, and assimilation are also described

    Growth of Oriented Au Nanostructures: Role of Oxide at the Interface

    Full text link
    We report on the formation of oriented gold nano structures on Si(100) substrate by annealing procedures in low vacuum (\approx10-2 mbar) and at high temperature (\approx 975^{\circ} C). Various thicknesses of gold films have been deposited with SiOx (using high vacuum thermal evaporation) and without SiOx (using molecular beam epitaxy) at the interface on Si(100). Electron microscopy measurements were performed to determine the morphology, orientation of the structures and the nature of oxide layer. Interfacial oxide layer, low vacuum and high temperature annealing conditions are found to be necessary to grow oriented gold structures. These gold structures can be transferred by simple scratching method.Comment: 13 pages, 3 figures, Accepted in J. Appl. Phy

    Computational Mechanism Design: A Call to Arms

    No full text
    Game theory has developed powerful tools for analyzing decision making in systems with multiple autonomous actors. These tools, when tailored to computational settings, provide a foundation for building multiagent software systems. This tailoring gives rise to the field of computational mechanism design, which applies economic principles to computer systems design
    corecore