224 research outputs found
Emission Noise and High Frequency Cut-Off of the Kondo Effect in a Quantum Dot
By coupling on chip a carbon nanotube to a quantum noise detector, a
superconductor-insulator-superconductor junction, via a resonant circuit, we
measure the emission noise of a carbon nanotube quantum dot in the Kondo
regime. The signature of the Kondo effect in the current noise is measured for
different ratios of the Kondo temperature over the measured frequency and for
different asymmetries of the coupling to the contacts, and compared to finite
frequency quantum noise calculations. Our results point towards the existence
of a high frequency cut-off of the electronic emission noise associated with
the Kondo resonance. This cut-off frequency is of the order of a few times the
Kondo temperature when the electronic system is close to equilibrium, which is
the case for a strongly asymmetric coupling. On the other hand, this cut-off is
shifted to lower frequency in a symmetric coupling situation, where the bias
voltage drives the Kondo state out-of-equilibrium. We then attribute the low
frequency cut-off to voltage induced spin relaxation.Comment: 5 pages, 3 figures and appendi
Measurements of flux dependent screening in Aharonov-Bohm rings
In order to investigate the effect of electronic phase coherence on screening
we have measured the flux dependent polarizability of isolated mesoscopic rings
at 350 MHz. At low temperature (below 100 mK) both non-dissipative and
dissipative parts of the polarizability exhibit flux oscillations with a period
of half a flux quantum in a ring. The sign and amplitude of the effect are in
good agreement with recent theoretical predictions. The observed positive
magneto-polarizability corresponds to an enhancement of screening when time
reversal symmetry is broken. The effect of electronic density and temperature
are also measured.Comment: 4 pages, revtex, 4 figures, to appear in Phys. Rev. Let
Detection of Quantum Noise from an Electrically-Driven Two-Level System
Quantum mechanics can strongly influence the noise properties of mesoscopic
devices. To probe this effect we have measured the current fluctuations at
high-frequency (5-90 GHz) using a superconductor-insulator-superconductor
tunnel junction as an on-chip spectrum analyser. By coupling this
frequency-resolved noise detector to a quantum device we can measure the
high-frequency, non-symmetrized noise as demonstrated for a Josephson junction.
The same scheme is used to detect the current fluctuations arising from
coherent charge oscillations in a two-level system, a superconducting charge
qubit. A narrow band peak is observed in the spectral noise density at the
frequency of the coherent charge oscillations.Comment: 16 pages, 4 figure
Manipulating the magnetic state of a carbon nanotube Josephson junction using the superconducting phase
The magnetic state of a quantum dot attached to superconducting leads is
experimentally shown to be controlled by the superconducting phase difference
across the dot. This is done by probing the relation between the Josephson
current and the superconducting phase difference of a carbon nanotube junction
whose Kondo energy and superconducting gap are of comparable size. It exhibits
distinctively anharmonic behavior, revealing a phase mediated singlet to
doublet transition. We obtain an excellent quantitative agreement with
numerically exact quantum Monte Carlo calculations. This provides strong
support that we indeed observed the finite temperature signatures of the phase
controlled zero temperature level-crossing transition originating from strong
local electronic correlations.Comment: 5 pages, 4 figures + supp. material
0- quantum transition in a carbon nanotube Josephson junction: universal phase dependence and orbital degeneracy
We investigate experimentally the supercurrent in a clean carbon nanotube
quantum dot, close to orbital degeneracy, connected to superconducting leads in
a regime of strong competition between local electronic correlations and
superconducting proximity effect. For an odd occupancy of the dot and
intermediate coupling to the reservoir, the Kondo effect can develop in the
normal state and screen the local magnetic moment of the dot. This leads to
singlet-doublet transitions that strongly affect the Josephson effect in a
single-level quantum dot: the sign of the supercurrent changes from positive to
negative (0 to -junction). In the regime of strongest competition between
the Kondo effect and proximity effect, meaning that the Kondo temperature
equals the superconducting gap, the magnetic state of the dot undergoes a first
order quantum transition induced by the superconducting phase difference across
the junction. This is revealed experimentally by anharmonic current-phase
relations. In addition, the very specific electronic configuration of clean
carbon nanotubes, with two nearly orbitally degenerated states, leads to
different physics depending whether only one or both quasi-degenerate upper
levels of the dots participate to transport, which is determined by their
occupancy and relative widths. When the transport of Cooper pairs takes place
through only one of these levels, we find that the phase diagram of the
phase-dependent 0- transition is a universal characteristic of a
discontinuous level-crossing quantum transition at zero temperature. In the
case were two levels participate to transport, the nanotube Josephson current
exhibits a continuous 0- transition, independent of the superconducting
phase, revealing a different physical mechanism of the transition.Comment: 14 pages, 12 figure
High Frequency Quantum Admittance and Noise Measurement with an On-chip Resonant Circuit
By coupling a quantum detector, a superconductor-insulator-superconductor
junction, to a Josephson junction \textit{via} a resonant circuit we probe the
high frequency properties, namely the ac complex admittance and the current
fluctuations of the Josephson junction at the resonant frequencies. The
admittance components show frequency dependent singularities related to the
superconducting density of state while the noise exhibits a strong frequency
dependence, consistent with theoretical predictions. The circuit also allows to
probe separately the emission and absorption noise in the quantum regime of the
superconducting resonant circuit at equilibrium. At low temperature the
resonant circuit exhibits only absorption noise related to zero point
fluctuations, whereas at higher temperature emission noise is also present.Comment: 15 pages, 15 figure
Tuning the Josephson current in carbon nanotubes with the Kondo effect
We investigate the Josephson current in a single wall carbon nanotube
connected to superconducting electrodes. We focus on the parameter regime in
which transport is dominated by Kondo physics. A sizeable supercurrent is
observed for odd number of electrons on the nanotube when the Kondo temperature
Tk is sufficiently large compared to the superconducting gap. On the other hand
when, in the center of the Kondo ridge, Tk is slightly smaller than the
superconducting gap, the supercurrent is found to be extremely sensitive to the
gate voltage Vbg. Whereas it is largely suppressed at the center of the ridge,
it shows a sharp increase at a finite value of Vbg. This increase can be
attributed to a doublet-singlet transition of the spin state of the nanotube
island leading to a pi shift in the current phase relation. This transition is
very sensitive to the asymmetry of the contacts and is in good agreement with
theoretical predictions.Comment: 5 pages, 4 figure
Magneto-polarisability of mesoscopic systems
In order to understand how screening is modified by electronic interferences
in a mesoscopic isolated system, we have computed both analytically and
numerically the average thermodynamic and time dependent polarisabilities of
two dimensional mesoscopic samples in the presence of an Aharonov-Bohm flux.
Two geometries have been considered: rings and squares. Mesoscopic correction
to screening are taken into account in a self consistent way, using the
response function formalism. The role of the statistical ensemble (canonical
and grand canonical), disorder and frequency have been investigated. We have
also computed first order corrections to the polarisability due to
electron-electron interactions. Our main results concern the diffusive regime.
In the canonical ensemble, there is no flux dependence polarisability when the
frequency is smaller than the level spacing. On the other hand, in the grand
canonical ensemble for frequencies larger than the mean broadening of the
energy levels (but still small compared to the level spacing), the
polarisability oscillates with flux, with the periodicity . The order of
magnitude of the effect is given by , where is the Thomas Fermi screening length, the
width of the rings or the size of the squares and their average
dimensionless conductance. This magnetopolarisability of Aharonov-Bohm rings
has been recently measured experimentally \cite{PRL_deblock00} and is in good
agreement with our grand canonical result.Comment: 12 pages, 10 figures, revte
- …
