542 research outputs found
Cutset Sampling for Bayesian Networks
The paper presents a new sampling methodology for Bayesian networks that
samples only a subset of variables and applies exact inference to the rest.
Cutset sampling is a network structure-exploiting application of the
Rao-Blackwellisation principle to sampling in Bayesian networks. It improves
convergence by exploiting memory-based inference algorithms. It can also be
viewed as an anytime approximation of the exact cutset-conditioning algorithm
developed by Pearl. Cutset sampling can be implemented efficiently when the
sampled variables constitute a loop-cutset of the Bayesian network and, more
generally, when the induced width of the networks graph conditioned on the
observed sampled variables is bounded by a constant w. We demonstrate
empirically the benefit of this scheme on a range of benchmarks
Improving Connectionist Energy Minimization
Symmetric networks designed for energy minimization such as Boltzman machines
and Hopfield nets are frequently investigated for use in optimization,
constraint satisfaction and approximation of NP-hard problems. Nevertheless,
finding a global solution (i.e., a global minimum for the energy function) is
not guaranteed and even a local solution may take an exponential number of
steps. We propose an improvement to the standard local activation function used
for such networks. The improved algorithm guarantees that a global minimum is
found in linear time for tree-like subnetworks. The algorithm, called activate,
is uniform and does not assume that the network is tree-like. It can identify
tree-like subnetworks even in cyclic topologies (arbitrary networks) and avoid
local minima along these trees. For acyclic networks, the algorithm is
guaranteed to converge to a global minimum from any initial state of the system
(self-stabilization) and remains correct under various types of schedulers. On
the negative side, we show that in the presence of cycles, no uniform algorithm
exists that guarantees optimality even under a sequential asynchronous
scheduler. An asynchronous scheduler can activate only one unit at a time while
a synchronous scheduler can activate any number of units in a single time step.
In addition, no uniform algorithm exists to optimize even acyclic networks when
the scheduler is synchronous. Finally, we show how the algorithm can be
improved using the cycle-cutset scheme. The general algorithm, called
activate-with-cutset, improves over activate and has some performance
guarantees that are related to the size of the network's cycle-cutset.Comment: See http://www.jair.org/ for any accompanying file
A Soft Constraint-Based Approach to QoS-Aware Service Selection
Service-based systems should be able to dynamically seek replacements for faulty or underperforming services, thus performing self-healing. It may however be the case that available services do not match all requirements, leading the system to grind to a halt. In similar situations it would be better to choose alternative candidates which, while not fulfilling all the constraints, allow the system to proceed. Soft constraints, instead of the traditional crisp constraints, can help naturally model and solve replacement problems of this sort. In this work we apply soft constraints to model SLAs and to decide how to rebuild compositions which may not satisfy all the requirements, in order not to completely stop running systems
A Graph Based Backtracking Algorithm for Solving General CSPs
Many AI tasks can be formalized as constraint satisfaction problems (CSPs), which involve finding values for variables subject to constraints. While solving a CSP is an NP-complete task in general, tractable classes of CSPs have been identified based on the structure of the underlying constraint graphs. Much effort has been spent on exploiting structural properties of the constraint graph to improve the efficiency of finding a solution. These efforts contributed to development of a class of CSP solving algorithms called decomposition algorithms. The strength of CSP decomposition is that its worst-case complexity depends on the structural properties of the constraint graph and is usually better than the worst-case complexity of search methods. Its practical application is limited, however, since it cannot be applied if the CSP is not decomposable. In this paper, we propose a graph based backtracking algorithm called omega-CDBT, which shares merits and overcomes the weaknesses of both decomposition and search approaches
A Framework for Decision-based Consistencies
International audienceConsistencies are properties of constraint networks that can be enforced by appropriate algorithms to reduce the size of the search space to be explored. Recently, many consistencies built upon taking decisions (most often, variable assignments) and stronger than (general- ized) arc consistency have been introduced. In this paper, our ambition is to present a clear picture of decision-based consistencies. We identify four general classes (or levels) of decision-based consistencies, denoted by S∆φ, E∆φ, B∆φ and D∆φ, study their relationships, and show that known consistencies are particular cases of these classes. Interestingly, this gen- eral framework provides us with a better insight into decision-based con- sistencies, and allows us to derive many new consistencies that can be directly integrated and compared with other ones
Tractable Pathfinding for the Stochastic On-Time Arrival Problem
We present a new and more efficient technique for computing the route that
maximizes the probability of on-time arrival in stochastic networks, also known
as the path-based stochastic on-time arrival (SOTA) problem. Our primary
contribution is a pathfinding algorithm that uses the solution to the
policy-based SOTA problem---which is of pseudo-polynomial-time complexity in
the time budget of the journey---as a search heuristic for the optimal path. In
particular, we show that this heuristic can be exceptionally efficient in
practice, effectively making it possible to solve the path-based SOTA problem
as quickly as the policy-based SOTA problem. Our secondary contribution is the
extension of policy-based preprocessing to path-based preprocessing for the
SOTA problem. In the process, we also introduce Arc-Potentials, a more
efficient generalization of Stochastic Arc-Flags that can be used for both
policy- and path-based SOTA. After developing the pathfinding and preprocessing
algorithms, we evaluate their performance on two different real-world networks.
To the best of our knowledge, these techniques provide the most efficient
computation strategy for the path-based SOTA problem for general probability
distributions, both with and without preprocessing.Comment: Submission accepted by the International Symposium on Experimental
Algorithms 2016 and published by Springer in the Lecture Notes in Computer
Science series on June 1, 2016. Includes typographical corrections and
modifications to pre-processing made after the initial submission to SODA'15
(July 7, 2014
Redundancy, Deduction Schemes, and Minimum-Size Bases for Association Rules
Association rules are among the most widely employed data analysis methods in
the field of Data Mining. An association rule is a form of partial implication
between two sets of binary variables. In the most common approach, association
rules are parameterized by a lower bound on their confidence, which is the
empirical conditional probability of their consequent given the antecedent,
and/or by some other parameter bounds such as "support" or deviation from
independence. We study here notions of redundancy among association rules from
a fundamental perspective. We see each transaction in a dataset as an
interpretation (or model) in the propositional logic sense, and consider
existing notions of redundancy, that is, of logical entailment, among
association rules, of the form "any dataset in which this first rule holds must
obey also that second rule, therefore the second is redundant". We discuss
several existing alternative definitions of redundancy between association
rules and provide new characterizations and relationships among them. We show
that the main alternatives we discuss correspond actually to just two variants,
which differ in the treatment of full-confidence implications. For each of
these two notions of redundancy, we provide a sound and complete deduction
calculus, and we show how to construct complete bases (that is,
axiomatizations) of absolutely minimum size in terms of the number of rules. We
explore finally an approach to redundancy with respect to several association
rules, and fully characterize its simplest case of two partial premises.Comment: LMCS accepted pape
Speeding up the constraint-based method in difference logic
"The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-319-40970-2_18"Over the years the constraint-based method has been successfully applied to a wide range of problems in program analysis, from invariant generation to termination and non-termination proving. Quite often the semantics of the program under study as well as the properties to be generated belong to difference logic, i.e., the fragment of linear arithmetic where atoms are inequalities of the form u v = k. However, so far constraint-based techniques have not exploited this fact: in general, Farkas’ Lemma is used to produce the constraints over template unknowns, which leads to non-linear SMT problems. Based on classical results of graph theory, in this paper we propose new encodings for generating these constraints when program semantics and templates belong to difference logic. Thanks to this approach, instead of a heavyweight non-linear arithmetic solver, a much cheaper SMT solver for difference logic or linear integer arithmetic can be employed for solving the resulting constraints. We present encouraging experimental results that show the high impact of the proposed techniques on the performance of the VeryMax verification systemPeer ReviewedPostprint (author's final draft
On The Power of Tree Projections: Structural Tractability of Enumerating CSP Solutions
The problem of deciding whether CSP instances admit solutions has been deeply
studied in the literature, and several structural tractability results have
been derived so far. However, constraint satisfaction comes in practice as a
computation problem where the focus is either on finding one solution, or on
enumerating all solutions, possibly projected to some given set of output
variables. The paper investigates the structural tractability of the problem of
enumerating (possibly projected) solutions, where tractability means here
computable with polynomial delay (WPD), since in general exponentially many
solutions may be computed. A general framework based on the notion of tree
projection of hypergraphs is considered, which generalizes all known
decomposition methods. Tractability results have been obtained both for classes
of structures where output variables are part of their specification, and for
classes of structures where computability WPD must be ensured for any possible
set of output variables. These results are shown to be tight, by exhibiting
dichotomies for classes of structures having bounded arity and where the tree
decomposition method is considered
- …
