742 research outputs found
Structures performance, benefit, cost-study
New technology concepts and structural analysis development needs which could lead to improved life cycle cost for future high-bypass turbofans were studied. The NASA-GE energy efficient engine technology is used as a base to assess the concept benefits. Recommended programs are identified for attaining these generic structural and other beneficial technologies
Far-infrared absorption in parallel quantum wires with weak tunneling
We study collective and single-particle intersubband excitations in a system
of quantum wires coupled via weak tunneling. For an isolated wire with
parabolic confinement, the Kohn's theorem guarantees that the absorption
spectrum represents a single sharp peak centered at the frequency given by the
bare confining potential. We show that the effect of weak tunneling between two
parabolic quantum wires is twofold: (i) additional peaks corresponding to
single-particle excitations appear in the absorption spectrum, and (ii) the
main absorption peak acquires a depolarization shift. We also show that the
interplay between tunneling and weak perpendicular magnetic field drastically
enhances the dispersion of single-particle excitations. The latter leads to a
strong damping of the intersubband plasmon for magnetic fields exceeding a
critical value.Comment: 18 pages + 6 postcript figure
Oscillation modes of two-dimensional nanostructures within the time-dependent local-spin-density approximation
We apply the time-dependent local-spin-density approximation as general
theory to describe ground states and spin-density oscillations in the linear
response regime of two-dimensional nanostructures of arbitrary shape. For this
purpose, a frequency analysis of the simulated real-time evolution is
performed. The effect on the response of the recently proposed spin-density
waves in the ground state of certain parabolic quantum dots is considered. They
lead to the prediction of a new class of excitations, soft spin-twist modes,
with energies well below that of the spin dipole oscillation.Comment: 4 RevTex pages and 4 GIF figures, accepted in PR
Influence of shape of quantum dots on their far-infrared absorption
We investigate the effects of the shape of quantum dots on their far-infrared
absorption in an external magnetic field by a model calculation. We focus our
attention on dots with a parabolic confinement potential deviating from the
common circular symmetry, and dots having circular doughnut shape. For a
confinement where the generalized Kohn theorem does not hold we are able to
interprete the results in terms of a mixture of a center-of-mass mode and
collective modes reflecting an excitation of relative motion of the electrons.
The calculations are performed within the time-dependent Hartree approximation
and the results are compared to available experimental results.Comment: RevTeX, 16 pages with 10 postscript figures included. Submitted to
Phys. Rev.
Microwave-induced magnetotransport phenomena in two-dimensional electron systems: Importance of electrodynamic effects
We discuss possible origins of recently discovered microwave induced
photoresistance oscillations in very-high-electron-mobility two-dimensional
electron systems. We show that electrodynamic effects -- the radiative decay,
plasma oscillations, and retardation effects, -- are important under the
experimental conditions, and that their inclusion in the theory is essential
for understanding the discussed and related microwave induced magnetotransport
phenomena.Comment: 5 pages, including 2 figures and 1 tabl
Inelastic Coulomb scattering rates due to acoustic and optical plasmon modes in coupled quantum wires
We report a theoretical study on the inelastic Coulomb scattering rate of an
injected electron in two coupled quantum wires in quasi-one-dimensional doped
semiconductors. Two peaks appear in the scattering spectrum due to the optical
and the acoustic plasmon scattering in the system. We find that the scattering
rate due to the optical plasmon mode is similar to that in a single wire but
the acoustic plasmon scattering depends crucially on its dispersion relation at
small . Furthermore, the effects of tunneling between the two wires are
studied on the inelastic Coulomb scattering rate. We show that a weak tunneling
can strongly affect the acoustic plasmon scattering.Comment: 6 Postscript figure
Magnetization of noncircular quantum dots
We calculate the magnetization of quantum dots deviating from circular
symmetry for noninteracting electrons or electrons interacting according to the
Hartree approximation. For few electrons the magnetization is found to depend
on their number, and the shape of the dot. The magnetization is an ideal probe
into the many-electron state of a quantum dot.Comment: 11 RevTeX pages with 6 included Postscript figure
Edge-Magnetoplasmon Wave-Packet Revivals in the Quantum Hall Effect
The quantum Hall effect is necessarily accompanied by low-energy excitations
localized at the edge of a two-dimensional electron system. For the case of
electrons interacting via the long-range Coulomb interaction, these excitations
are edge magnetoplasmons. We address the time evolution of localized
edge-magnetoplasmon wave packets. On short times the wave packets move along
the edge with classical E cross B drift. We show that on longer times the wave
packets can have properties similar to those of the Rydberg wave packets that
are produced in atoms using short-pulsed lasers. In particular, we show that
edge-magnetoplasmon wave packets can exhibit periodic revivals in which a
dispersed wave packet reassembles into a localized one. We propose the study of
edge-magnetoplasmon wave packets as a tool to investigate dynamical properties
of integer and fractional quantum-Hall edges. Various scenarios are discussed
for preparing the initial wave packet and for detecting it at a later time. We
comment on the importance of magnetoplasmon-phonon coupling and on quantum and
thermal fluctuations.Comment: 18 pages, RevTex, 7 figures and 2 tables included, Fig. 5 was
originally 3Mbyte and had to be bitmapped for submission to archive; in the
process it acquired distracting artifacts, to upload the better version, see
http://physics.indiana.edu/~uli/publ/projects.htm
Magnetoplasmons in quantum rings
We have studied the structure and dipole charge density response of nanorings
as a function of the magnetic field using local-spin density functional theory.
Two small rings consisting of 12 and 22 electrons confined by a positively
charged background are used to represent the cases of a narrow and a wide ring.
The results are qualitatively compared with experimental data existing on
microrings and on antidots. A smaller ring containing 5 electrons is also
analyzed to allow for a closer comparison with a recent experiment on a two
electron quantum ring.Comment: Typeset using Revtex, 13 pages and 11 Postscript figure
A Simple Shell Model for Quantum Dots in a Tilted Magnetic Field
A model for quantum dots is proposed, in which the motion of a few electrons
in a three-dimensional harmonic oscillator potential under the influence of a
homogeneous magnetic field of arbitrary direction is studied. The spectrum and
the wave functions are obtained by solving the classical problem. The ground
state of the Fermi-system is obtained by minimizing the total energy with
regard to the confining frequencies. From this a dependence of the equilibrium
shape of the quantum dot on the electron number, the magnetic field parameters
and the slab thickness is found.Comment: 15 pages (Latex), 3 epsi figures, to appear in PhysRev B, 55 Nr. 20
(1997
- …
