1,299 research outputs found
Quantum random walks in optical lattices
We propose an experimental realization of discrete quantum random walks using
neutral atoms trapped in optical lattices. The random walk is taking place in
position space and experimental implementation with present day technology
--even using existing set-ups-- seems feasible. We analyze the influence of
possible imperfections in the experiment and investigate the transition from a
quantum random walk to the classical random walk for increasing errors and
decoherence.Comment: 8 pages, 4 figure
A Quantum Scattering Interferometer
The collision of two ultra-cold atoms results in a quantum-mechanical
superposition of two outcomes: each atom continues without scattering and each
atom scatters as a spherically outgoing wave with an s-wave phase shift. The
magnitude of the s-wave phase shift depends very sensitively on the interaction
between the atoms. Quantum scattering and the underlying phase shifts are
vitally important in many areas of contemporary atomic physics, including
Bose-Einstein condensates, degenerate Fermi gases, frequency shifts in atomic
clocks, and magnetically-tuned Feshbach resonances. Precise measurements of
quantum scattering phase shifts have not been possible until now because, in
scattering experiments, the number of scattered atoms depends on the s-wave
phase shifts as well as the atomic density, which cannot be measured precisely.
Here we demonstrate a fundamentally new type of scattering experiment that
interferometrically detects the quantum scattering phase shifts of individual
atoms. By performing an atomic clock measurement using only the scattered part
of each atom, we directly and precisely measure the difference of the s-wave
phase shifts for the two clock states in a density independent manner. Our
method will give the most direct and precise measurements of ultracold
atom-atom interactions and will place stringent limits on the time variations
of fundamental constants.Comment: Corrected formatting and typo
Spin-spin interaction and spin-squeezing in an optical lattice
We show that by displacing two optical lattices with respect to each other,
we may produce interactions similar to the ones describing ferro-magnetism in
condensed matter physics. We also show that particularly simple choices of the
interaction lead to spin-squeezing, which may be used to improve the
sensitivity of atomic clocks. Spin-squeezing is generated even with partially,
and randomly, filled lattices, and our proposal may be implemented with current
technology.Comment: 4 pages, including 4 figure
Bosons in cigar-shape traps: Thomas-Fermi regime, Tonks-Girardeau regime, and between
We present a quantitative analysis of the experimental accessibility of the
Tonks-Girardeau gas in the current day experiments with cigar-trapped alkalis.
For this purpose we derive, using a Bethe anzats generated local equation of
state, a set of hydrostatic equations describing one-dimensional
delta-interacting Bose gases trapped in a harmonic potential. The resulting
solutions cover the_entire range_ of atomic densities.Comment: 4 pages, 4 figure
Alcohol-related expectancies are associated with the D2 dopamine receptor and GABAa receptor B3 subunit genes
Molecular genetic research has identified promising markers of alcohol dependence, including alleles of the D2 dopamine receptor (DRD2) and the GABAA receptor ¬3 subunit (GABRB3) genes. Whether such genetic risk manifests itself in stronger alcohol-related outcome expectancies, or in difficulty resisting alcohol, is unknown. In the present study, A1+ (A1A1 and A1A2 genotypes) and A1- (A2A2 genotype) alleles of the DRD2 and G1+ (G1G1 and G1 non-G1 genotypes) and G1- (non-G1 non-G1 genotype) alleles of the GABRB3 were determined in a group of 56 medically-ill patients diagnosed with alcohol dependence. Mood-related Alcohol Expectancy (AE) and Drinking Refusal Self-Efficacy (DRSE) were assessed using the Drinking Expectancy Profile (Young and Oei, 1996). Patients with the DRD2 A1+ allele, compared to those with the DRD2 A1- allele, reported lower DRSE in situations of social pressure (p=. 009). Similarly, lower DRSE was reported under social pressure by patients with the GABRB3 G1+ allele when compared to those with the GABRB3 G1- allele (p=.027). Patients with the GABRB3 G1+ allele also revealed reduced DRSE in situations characterized by negative affect than patients with the GABRB3 G1- alleles (p=. 037). Patients carrying the GABRB3 G1+ allele showed stronger AE relating to negative affective change (for example, increased depression) than their GABRB3 G1- counterparts (p=. 006). Biological influence in the development of some classes of cognitions is hypothesized. The clinical implications, particularly with regard to patient-treatment matching and the development of an integrated psychological and pharmacogenetic approach are discussed
Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator
The reliable detection of single quantum particles has revolutionized the
field of quantum optics and quantum information processing. For several years,
researchers have aspired to extend such detection possibilities to larger scale
strongly correlated quantum systems, in order to record in-situ images of a
quantum fluid in which each underlying quantum particle is detected. Here we
report on fluorescence imaging of strongly interacting bosonic Mott insulators
in an optical lattice with single-atom and single-site resolution. From our
images, we fully reconstruct the atom distribution on the lattice and identify
individual excitations with high fidelity. A comparison of the radial density
and variance distributions with theory provides a precise in-situ temperature
and entropy measurement from single images. We observe Mott-insulating plateaus
with near zero entropy and clearly resolve the high entropy rings separating
them although their width is of the order of only a single lattice site.
Furthermore, we show how a Mott insulator melts for increasing temperatures due
to a proliferation of local defects. Our experiments open a new avenue for the
manipulation and analysis of strongly interacting quantum gases on a lattice,
as well as for quantum information processing with ultracold atoms. Using the
high spatial resolution, it is now possible to directly address individual
lattice sites. One could, e.g., introduce local perturbations or access regions
of high entropy, a crucial requirement for the implementation of novel cooling
schemes for atoms on a lattice
Random Scattering by Atomic Density Fluctuations in Optical Lattices
We investigate hitherto unexplored regimes of probe scattering by atoms
trapped in optical lattices: weak scattering by effectively random atomic
density distributions and multiple scattering by arbitrary atomic
distributions. Both regimes are predicted to exhibit a universal semicircular
scattering lineshape for large density fluctuations, which depend on
temperature and quantum statistics.Comment: 4 pages, 2 figure
Atomic collision dynamics in optical lattices
We simulate collisions between two atoms, which move in an optical lattice
under the dipole-dipole interaction. The model describes simultaneously the two
basic dynamical processes, namely the Sisyphus cooling of single atoms, and the
light-induced inelastic collisions between them. We consider the J=1/2 -> J=3/2
laser cooling transition for Cs, Rb and Na. We find that the hotter atoms in a
thermal sample are selectively lost or heated by the collisions, which modifies
the steady state distribution of atomic velocities, reminiscent of the
evaporative cooling process.Comment: 17 pages, 15 figure
- …
