239 research outputs found

    Reevaluating Texas Energy Market Forecasts in The Wake of Recent Extreme Weather Events

    Get PDF
    This paper provides updated forecasts of energy demand in Texas and recognizes the impact of sustainable energy. It is important that the forecasts of the adoption of sustainable energy are reexamined after Winter Storm Uri crippled the Texas power grid and left many without power. This storm highlighted the issues the Texas power grid had and has continued to struggle with in supplying the state with energy. This paper will offer an overview of the relevant literature on the adoption of sustainable energy and relevant events that have occurred in the state of Texas that will give the reader the necessary background and context needed to understand the need for this study as well as its implications. The text will offer the reader updated forecasts with respect to the increasing adoption of renewable energy in Texas. Two major methodologies will be addressed as the researchers used different forecasting techniques to produce the most accurate model for forecasting the total energy demand for all the areas that EROCT services. The discussion will review the findings of the forecasting methods used, the significance of the findings, and the implications of the results for the future of the Texas energy economy

    Enhancing wind erosion monitoring and assessment for U.S. rangelands

    Get PDF
    Wind erosion is a major resource concern for rangeland managers because it can impact soil health, ecosystem structure and function, hydrologic processes, agricultural production, and air quality. Despite its significance, little is known about which landscapes are eroding, by how much, and when. The National Wind Erosion Research Network was established in 2014 to develop tools for monitoring and assessing wind erosion and dust emissions across the United States. The Network, currently consisting of 13 sites, creates opportunities to enhance existing rangeland soil, vegetation, and air quality monitoring programs. Decision-support tools developed by the Network will improve the prediction and management of wind erosion across rangeland ecosystems. © 2017 The Author(s)The Rangelands archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information

    A new modality of treatment for non-united fracture of the humerus in a patient with osteopetrosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Osteopetrosis introduces technical limitations to the traditional treatment of fracture management that may be minimised with specific pre-operative planning. Extreme care and caution are required when drilling, reaming, or inserting implants in patients with osteopetrosis. Caution must be exercised throughout the postoperative course when these patients are at greatest risk for device failure or further injury.</p> <p>Case presentation</p> <p>We present our experience of treating such a fracture where a patient presented with a non-united fracture of the humerus. The bone was already osteoporotic. We successfully used a new technique which has not been described in the literature before. This included the use of a high-speed drill to prepare the bone for screw fixation. Bone healing was augmented with bone morphogenic protein.</p> <p>Conclusion</p> <p>This technique can give invaluable experience to surgeons who are involved in treating these types of fracture.</p

    Carbon-sensitive pedotransfer functions for plant available water

    Get PDF
    Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (θAWHC), while some studies show the ability to substantially increase θAWHC through management. The Soil Health Institute\u27s North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (θFC) and permanent wilting point (θPWP). New pedotransfer functions had predictions of θAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on θAWHC. For an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase in θAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil texture classes was found. This SOC related increase in θAWHC is about double previous estimates. Calcareous soils had an increase in θAWHC of 1.2 mm 100 mm–1 soil associated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience

    Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

    Get PDF
    Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity

    Synthesis Paper: Targeted Livestock Grazing: Prescription for Healthy Rangelands

    Get PDF
    Targeted livestock grazing is a proven tool for manipulating rangeland vegetation, and current knowledge about targeted livestock grazing is extensive and expanding rapidly. Targeted grazing prescriptions optimize the timing, frequency, intensity, and selectivity of grazing (or browsing) in combinations that purposely exert grazing/browsing pressure on specific plant species or portions of the landscape. Targeted grazing differs from traditional grazing management in that the goal of targeted grazing is to apply defoliation or trampling to achieve specific vegetation management objectives, whereas the goal of traditional livestock grazing management is generally the production of livestock commodities. A shared aim of targeted livestock grazing and traditional grazing management is to sustain healthy soils, flora, fauna, and water resources that, in turn, can sustain natural ecological processes (e.g., nutrient cycle, water cycle, energy flow). Targeted grazing prescriptions integrate knowledge of plant ecology, livestock nutrition, and livestock foraging behavior. Livestock can be focused on target areas through fencing, herding, or supplement placement. Although practices can be developed to minimize the impact of toxins contained in target plants, the welfare of the animals used in targeted grazing must be a priority. Monitoring is needed to determine if targeted grazing is successful and to refine techniques to improve efficacy and efficiency. Examples of previous research studies and approaches are presented to highlight the ecological benefits that can be achieved when targeted grazing is applied properly. These cases include ways to suppress invasive plants and ways to enhance wildlife habitat and biodiversity. Future research should address the potential to select more adapted and effective livestock for targeted grazing and the associated animal welfare concerns with this practice. Targeted livestock grazing provides land managers a viable alternative to mechanical, chemical, and prescribed fire treatments to manipulate rangeland vegetation
    corecore