574 research outputs found

    Exoplanet HD 209458b : Evaporation strengthened

    Full text link
    Following re-analysis of Hubble Space Telescope observations of primary transits of the extrasolar planet HD209458b at Lyman-alpha, Ben-Jaffel (2007, BJ007) claims that no sign of evaporation is observed. Here we show that, in fact, this new analysis is consistent with the one of Vidal-Madjar et al. (2003, VM003) and supports the detection of evaporation. The apparent disagreement is mainly due to the disparate wavelength ranges that are used to derive the transit absorption depth. VM003 derives a (15+/-4)% absorption depth during transit over the core of the stellar Lyman-alpha line (from -130 km/s to +100 km/s), and this result agrees with the (8.9+/-2.1)% absorption depth reported by BJ007 from a slightly expanded dataset but over a larger wavelength range (+/-200 km/s). These measurements agree also with the (5+/-2)% absorption reported by Vidal-Madjar et al. (2004) over the whole Lyman-alpha line from independent, lower-resolution data. We show that stellar Lyman-alpha variability is unlikely to significantly affect those detections. The HI atoms must necessarily have velocities above the escape velocities and/or be outside the Roche lobe, given the lobe shape and orientation. Absorption by HI in HD209458b's atmosphere has thus been detected with different datasets, and now with independent analyses. All these results strengthen the concept of evaporating hot-Jupiters, as well as the modelization of this phenomenon.Comment: To be published in ApJ

    A Search for Water in the Atmosphere of HAT-P-26b Using LDSS-3C

    Get PDF
    The characterization of a physically-diverse set of transiting exoplanets is an important and necessary step towards establishing the physical properties linked to the production of obscuring clouds or hazes. It is those planets with identifiable spectroscopic features that can most effectively enhance our understanding of atmospheric chemistry and metallicity. The newly-commissioned LDSS-3C instrument on Magellan provides enhanced sensitivity and suppressed fringing in the red optical, thus advancing the search for the spectroscopic signature of water in exoplanetary atmospheres from the ground. Using data acquired by LDSS-3C and the Spitzer Space Telescope, we search for evidence of water vapor in the transmission spectrum of the Neptune-mass planet HAT-P-26b. Our measured spectrum is best explained by the presence of water vapor, a lack of potassium, and either a high-metallicity, cloud-free atmosphere or a solar-metallicity atmosphere with a cloud deck at ~10 mbar. The emergence of multi-scale-height spectral features in our data suggests that future observations at higher precision could break this degeneracy and reveal the planet's atmospheric chemical abundances. We also update HAT-P-26b's transit ephemeris, t_0 = 2455304.65218(25) BJD_TDB, and orbital period, p = 4.2345023(7) days.Comment: 9 pages, 8 figures, Accepted for publication in Ap

    The Embedded Super Star Cluster of SBS0335-052

    Full text link
    We analyze the infrared (6-100 micron) spectral energy distribution of the blue compact dwarf and metal-poor (Z=Z_solar/41) galaxy SBS0335-052. With the help of DUSTY (Ivezic et al. 1999), a program that solves the radiation transfer equations in a spherical environment, we evaluate that the infrared (IR) emission of SBS0335-052 is produced by an embedded super-star cluster (SSC) hidden under 10^5 M_solar of dust, causing 30 mag of visual extinction. This implies that one cannot detect any stellar emission from the 2x10^6 M_solar stellar cluster even at near-infrared (NIR) wavelengths. The derived grain size distribution departs markedly from the widely accepted size distribution inferred for dust in our galaxy (the so-called MRN distribution, Mathis et al. 1977), but resembles what is seen around AGNs, namely an absence of PAH and smaller grains, and grains that grow to larger sizes (around 1 micron). The fact that a significant amount of dust is present in such a low-metallicity galaxy, hiding from UV and optical view most of the star formation activity in the galaxy, and that the dust size distribution cannot be reproduced by a standard galactic law, should be borne in mind when interpreting the spectrum of primeval galaxies.Comment: 32 pages, 3 figures,accepted for publication in A

    Morphological analysis of the cm-wave continuum in the dark cloud LDN1622

    Full text link
    The spectral energy distribution of the dark cloud LDN1622, as measured by Finkbeiner using WMAP data, drops above 30GHz and is suggestive of a Boltzmann cutoff in grain rotation frequencies, characteristic of spinning dust emission. LDN1622 is conspicuous in the 31 GHz image we obtained with the Cosmic Background Imager, which is the first cm-wave resolved image of a dark cloud. The 31GHz emission follows the emission traced by the four IRAS bands. The normalised cross-correlation of the 31 GHz image with the IRAS images is higher by 6.6sigma for the 12um and 25um bands than for the 60um and 100um bands: C(12+25) = 0.76+/-0.02 and C(60+100) = 0.64+/-0.01. The mid-IR -- cm-wave correlation in LDN 1622 is evidence for very small grain (VSG) or continuum emission at 26-36GHz from a hot molecular phase. In dark clouds and their photon-dominated regions (PDRs) the 12um and 25um emission is attributed to stochastic heating of the VSGs. The mid-IR and cm-wave dust emissions arise in a limb-brightened shell coincident with the PDR of LDN1622, where the incident UV radiation from the Ori OB1b association heats and charges the grains, as required for spinning dust.Comment: accepted for publication in ApJ - the complete article with uncompressed figures may be downloaded from http://www.das.uchile.cl/~simon/ftp/l1622.pd

    On Ultrasmall Silicate Grains in the Diffuse Interstellar Medium

    Get PDF
    The abundance of both amorphous and crystalline silicates in very small grains is limited by the fact that the 10 micron silicate emission feature is not detected in the diffuse ISM. On the basis of the observed IR emission spectrum for the diffuse ISM, the observed ultraviolet extinction curve, and the 10 micron silicate absorption profile, we obtain upper limits on the abundances of ultrasmall (a < 15 Angstrom) amorphous and crystalline silicate grains. Contrary to previous work, as much as ~20% of interstellar Si could be in a < 15 Angstrom silicate grains without violating observational constraints. Not more than ~5% of the Si can be in crystalline silicates (of any size).Comment: Submitted to ApJ Letters, 11 pages, 4 figures, Late

    The infrared luminosity function of galaxies at redshifts z=1 and z~2 in the GOODS fields

    Get PDF
    We present the rest-frame 8 micron luminosity function (LF) at redshifts z=1 and ~2, computed from Spitzer 24 micron-selected galaxies in the GOODS fields over an area of 291 sq. arcmin. Using classification criteria based on X-ray data and IRAC colours, we identify the AGN in our sample. The rest-frame 8 micron LF for star-forming galaxies at redshifts z=1 and ~2 have the same shape as at z~0, but with a strong positive luminosity evolution. The number density of star-forming galaxies with log_{10}(nu L_nu(8 micron))>11 increases by a factor >250 from redshift z~0 to 1, and is basically the same at z=1 and ~2. The resulting rest-frame 8 micron luminosity densities associated with star formation at z=1 and ~2 are more than four and two times larger than at z~0, respectively. We also compute the total rest-frame 8 micron LF for star-forming galaxies and AGN at z~2 and show that AGN dominate its bright end, which is well-described by a power-law. Using a new calibration based on Spitzer star-forming galaxies at 0<z<0.6 and validated at higher redshifts through stacking analysis, we compute the bolometric infrared (IR) LF for star-forming galaxies at z=1 and ~2. We find that the respective bolometric IR luminosity densities are (1.2+/-0.2) x 10^9 and (6.6^{+1.2}_{-1.0}) x 10^8 L_sun Mpc^{-3}, in agreement with previous studies within the error bars. At z~2, around 90% of the IR luminosity density associated with star formation is produced by luminous and ultraluminous IR galaxies (LIRG and ULIRG), with the two populations contributing in roughly similar amounts. Finally, we discuss the consistency of our findings with other existing observational results on galaxy evolution.Comment: Accepted for publication in the ApJ. 33 pages, 15 figures. Uses emulateap

    Deuterium toward the WD0621-376 sight line: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    Full text link
    Far Ultraviolet Spectroscopic Explorer observations are presented for WD0621-376, a DA white dwarf star in the local interstellar medium (LISM) at a distance of about 78 pc. The data have a signal-to-noise ratio of about 20-40 per 20 km/s resolution element and cover the wavelength range 905-1187 \AA. LISM absorption is detected in the lines of D I, C II, C II*, C III, N I, N II, N III, O I, Ar I, and Fe II. This sight line is partially ionized, with an ionized nitrogen fraction of > 0.23. We determine the ratio D/O=(3.9±1.01.3)×102D/O = (3.9 \pm ^{1.3}_{1.0})\times 10^{-2} (2σ\sigma). Assuming a standard interstellar oxygen abundance, we derive D/H1.3×105{\rm D/H} \approx 1. 3 \times 10^{-5}. Using the value of N(H I) derived from EUVE data gives a similar D/H ratio. The D I/N I ratio is (3.3±0.81.0)×101(3.3 \pm ^{1.0}_{0.8})\times 10^{-1} (2σ\sigma).Comment: accepted for publication in the ApJ

    Exoplanet Characterization by Proxy: a Transiting 2.15 R_Earth Planet Near the Habitable Zone of the Late K dwarf Kepler-61

    Full text link
    We present the validation and characterization of Kepler-61b: a 2.15 R_Earth planet orbiting near the inner edge of the habitable zone of a low-mass star. Our characterization of the host star Kepler-61 is based upon a comparison with the set of spectroscopically similar stars with directly-measured radii and temperatures. We apply a stellar prior drawn from the weighted mean of these properties, in tandem with the Kepler photometry, to infer a planetary radius for Kepler-61b of 2.15+/-0.13 R_Earth and an equilibrium temperature of 273+/-13 K (given its period of 59.87756+/-0.00020 days and assuming a planetary albedo of 0.3). The technique of leveraging the physical properties of nearby "proxy" stars allows for an independent check on stellar characterization via the traditional measurements with stellar spectra and evolutionary models. In this case, such a check had implications for the putative habitability of Kepler-61b: the planet is 10% warmer and larger than inferred from K-band spectral characterization. From the Kepler photometry, we estimate a stellar rotation period of 36 days, which implies a stellar age of >1 Gyr. We summarize the evidence for the planetary nature of the Kepler-61 transit signal, which we conclude is 30,000 times more likely to be due to a planet than a blend scenario. Finally, we discuss possible compositions for Kepler-61b with a comparison to theoretical models as well as to known exoplanets with similar radii and dynamically measured masses.Comment: 23 pages, 12 figures. Accepted for publication in Ap

    Electric Dipole Radiation from Spinning Dust Grains

    Full text link
    We discuss the rotational excitation of small interstellar grains and the resulting electric dipole radiation from spinning dust. Attention is given to excitation and damping of rotation by: collisions with neutrals; collisions with ions; plasma drag; emission of infrared radiation; emission of microwave radiation; photoelectric emission; and formation of H_2 on the grain surface. We introduce dimensionless functions F and G which allow direct comparison of the contributions of different mechanisms to rotational drag and excitation. Emissivities are estimated for dust in different phases of the interstellar medium, including diffuse HI, warm HI, low-density photoionized gas, and cold molecular gas. Spinning dust grains can explain much, and perhaps all, of the 14-50 GHz background component recently observed in CBR studies. It should be possible to detect rotational emission from small grains by ground-based observations of molecular clouds.Comment: 59 pages, 19 eps figures, uses aaspp4.sty . Submitted to Ap.
    corecore