983 research outputs found
About the Algebraic Solutions of Smallest Enclosing Cylinders Problems
Given n points in Euclidean space E^d, we propose an algebraic algorithm to
compute the best fitting (d-1)-cylinder. This algorithm computes the unknown
direction of the axis of the cylinder. The location of the axis and the radius
of the cylinder are deduced analytically from this direction. Special attention
is paid to the case d=3 when n=4 and n=5. For the former, the minimal radius
enclosing cylinder is computed algebrically from constrained minimization of a
quartic form of the unknown direction of the axis. For the latter, an
analytical condition of existence of the circumscribed cylinder is given, and
the algorithm reduces to find the zeroes of an one unknown polynomial of degree
at most 6. In both cases, the other parameters of the cylinder are deduced
analytically. The minimal radius enclosing cylinder is computed analytically
for the regular tetrahedron and for a trigonal bipyramids family with a
symmetry axis of order 3.Comment: 13 pages, 0 figure; revised version submitted to publication
(previous version is a copy of the original one of 2010
Improved Implementation of Point Location in General Two-Dimensional Subdivisions
We present a major revamp of the point-location data structure for general
two-dimensional subdivisions via randomized incremental construction,
implemented in CGAL, the Computational Geometry Algorithms Library. We can now
guarantee that the constructed directed acyclic graph G is of linear size and
provides logarithmic query time. Via the construction of the Voronoi diagram
for a given point set S of size n, this also enables nearest-neighbor queries
in guaranteed O(log n) time. Another major innovation is the support of general
unbounded subdivisions as well as subdivisions of two-dimensional parametric
surfaces such as spheres, tori, cylinders. The implementation is exact,
complete, and general, i.e., it can also handle non-linear subdivisions. Like
the previous version, the data structure supports modifications of the
subdivision, such as insertions and deletions of edges, after the initial
preprocessing. A major challenge is to retain the expected O(n log n)
preprocessing time while providing the above (deterministic) space and
query-time guarantees. We describe an efficient preprocessing algorithm, which
explicitly verifies the length L of the longest query path in O(n log n) time.
However, instead of using L, our implementation is based on the depth D of G.
Although we prove that the worst case ratio of D and L is Theta(n/log n), we
conjecture, based on our experimental results, that this solution achieves
expected O(n log n) preprocessing time.Comment: 21 page
Presentations: from Kac-Moody groups to profinite and back
We go back and forth between, on the one hand, presentations of arithmetic
and Kac-Moody groups and, on the other hand, presentations of profinite groups,
deducing along the way new results on both
Exchange bias in GeMn nanocolumns: the role of surface oxidation
We report on the exchange biasing of self-assembled ferromagnetic GeMn
nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of
this surface oxide shows a multiplet fine structure that is typical of the Mn2+
valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a
coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K)
in a magnetic field as low as 0.25 T. This exchange bias is attributed to the
interface coupling between the ferromagnetic nanocolumns and the
antiferromagnetic MnO-like caps. The effect enhancement is achieved by
depositing a MnO layer on the GeMn nanocolumns.Comment: 7 pages, 5 figure
Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures
We present a detailed quantitative magneto-optical imaging study of several
superconductor/ferromagnet hybrid structures, including Nb deposited on top of
thermomagnetically patterned NdFeB, and permalloy/niobium with erasable and
tailored magnetic landscapes imprinted in the permalloy layer. The
magneto-optical imaging data is complemented with and compared to scanning Hall
probe microscopy measurements. Comprehensive protocols have been developed for
calibrating, testing, and converting Faraday rotation data to magnetic field
maps. Applied to the acquired data, they reveal the comparatively weaker
magnetic response of the superconductor from the background of larger fields
and field gradients generated by the magnetic layer.Comment: 21 pages, including 2 pages of supplementary materia
Experimental probing of exchange interactions between localized spins in the dilute magnetic insulator (Ga,Mn)N
The sign, magnitude, and range of the exchange couplings between pairs of Mn
ions is determined for (Ga,Mn)N and (Ga,Mn)N:Si with x < 3%. The samples have
been grown by metalorganic vapor phase epitaxy and characterized by
secondary-ion mass spectroscopy; high-resolution transmission electron
microscopy with capabilities allowing for chemical analysis, including the
annular dark-field mode and electron energy loss spectroscopy; high-resolution
and synchrotron x-ray diffraction; synchrotron extended x-ray absorption
fine-structure; synchrotron x-ray absorption near-edge structure; infra-red
optics and electron spin resonance. The results of high resolution magnetic
measurements and their quantitative interpretation have allowed to verify a
series of ab initio predictions on the possibility of ferromagnetism in dilute
magnetic insulators and to demonstrate that the interaction changes from
ferromagnetic to antiferromagnetic when the charge state of the Mn ions is
reduced from 3+ to 2+.Comment: 12 pages, 14 figures; This version contains the detailed
characterization of the crystal structure as well as of the Mn distribution
and charge stat
Encoding Synchronous Interactions Using Labelled Petri Nets
International audienceWe present an encoding of (bound) CSP processes with replication into Petri nets with labelled transitions. Through the encoding, the firing semantics of Petri nets models the standard operational semantics of CSP processes, which is both preserved and reflected. This correspondence allows for describing by net semantics the standard CSP observational equivalences. Since the encoding is modular with respect to process syntax, the paper puts on a firm ground the technology transfer between the two formalisms, e.g. recasting into the CSP framework well-established results like decidability of coverability for nets. This work complements previous results concerning the encoding of asynchronous interactions, thus witnessing the expressiveness of (open) labelled nets in modelling process calculi with alternative communication patterns
Uso de aspersão em suínos nas baias de espera: implicações no bem-estar.
Projeto/Plano de Ação: 03.08.60800-01
- …
