8,292 research outputs found
Forced Convection Burnout and Hydrodynamic Instability Experiments for Water at High Pressure. Part VII: Analysis of burnout experiments on 3x3 rod bundles with uniform and non-uniform heat generation. EUR 4875.
Pedaling time variability is increased in dropped riding position
Variability of cycle-to-cycle duration during a pedaling task is probably related to the rhythmic control of the lower limb muscles as in gait. Although walking variability has been extensively studied for its clinical and physiological implications, pedaling variability has received little attention. The present contribution determines the variability of the cycling time during a 10-min exercise as a function of upper body position. Nine healthy males were required to pedal on cycle-ergometer at a self-selected speed for 10 min in two different upper body positions [hands on upper handlebars (UP) or lower handlebars (DP)]. Time domain measures of cycling variability [total standard deviation (SDtot), mean standard deviation cycle-to-cycle intervals over
100 cycles (SD100), standard deviation of the average cycle-to-cycle intervals over 100 cycles (SDA100)] were measured. Moreover, the same time domain measures were also calculated for heart rate in order to discriminate possible involvements of autonomic regulation. Finally, the structure of the cycle variations has been analyzed in the framework of deterministic chaos calculating the maximum Lyapunov exponents. Significant increases in cycle-to-cycle variability were found for SDtot, SD100 in DP compared to UP, whereas cardiac parameters and other cycling parameters were not changed in the two positions. Moreover, the maximum Lyapunov exponent was significantly more negative in DP. The results suggest that small perturbations of upper body position can influence the control of cycling rhythmicity by increasing the variability in a dissipative deterministic regimen
In-situ Investigation of the Early Stage of TiO2 epitaxy on (001) SrTiO3
We report on a systematic study of the growth of epitaxial TiO2 films
deposited by pulsed laser deposition on Ti-terminated (001) SrTiO3 single
crystals. By using in-situ reflection high energy electron diffraction, low
energy electron diffraction, x-ray photoemission spectroscopy and scanning
probe microscopy, we show that the stabilization of the anatase (001) phase is
preceded by the growth of a pseudomorphic Sr-Ti-O intermediate layer, with a
thickness between 2 and 4 nm. The data demonstrate that the formation of this
phase is related to the activation of long range Sr migration from the
substrate to the film. The role of interface Gibbs energy minimization, as a
driving force for Sr diffusion, is discussed. Our results enrich the phase
diagram of the Sr-Ti-O system under epitaxial strain opening the roudeficient
SrTiO phase.Comment: 8 pages, 7 figure
Role of interband scattering in neutron irradiated MgB thin films by Scanning Tunneling Spectroscopy measurements
A series of MgB thin films systematically disordered by neutron
irradiation have been studied by Scanning Tunneling Spectroscopy. The c-axis
orientation of the films allowed a reliable determination of local density of
state of the band. With increasing disorder, the conductance peak moves
towards higher voltages and becomes lower and broader, indicating a monotonic
increase of the gap and of the broadening parameter. These results are
discussed in the frame of two-band superconductivity.Comment: The text will be submitted in Latex format, and the corresponding pdf
file should take 6 pages. There are 5 figures (eps files submitted) and 1
tabl
High quality MgB2 thin films in-situ grown by dc magnetron sputtering
Thin films of the recently discovered magnesium diboride (MgB2) intermetalic
superconducting compound have been grown using a magnetron sputtering
deposition technique followed by in-situ annealing at 830 C. High quality films
were obtained on both sapphire and MgO substrates. The best films showed
maximum Tc = 35 K (onset), a transition width of 0.5 K, a residual resistivity
ratio up to 1.6, a low temperature critical current density Jc > 1 MA/cm2 and
anisotropic critical field with gamma = 2.5 close to the values obtained for
single crystals. The preparation technique can be easily scaled to produce
large area in-situ films.Comment: 7 pages, 4 figure
A new generation photodetector for astroparticle physics: the VSiPMT
The VSiPMT (Vacuum Silicon PhotoMultiplier Tube) is an innovative design we
proposed for a revolutionary photon detector. The main idea is to replace the
classical dynode chain of a PMT with a SiPM (G-APD), the latter acting as an
electron detector and amplifier. The aim is to match the large sensitive area
of a photocathode with the performance of the SiPM technology. The VSiPMT has
many attractive features. In particular, a low power consumption and an
excellent photon counting capability. To prove the feasibility of the idea we
first tested the performance of a special non-windowed SiPM by Hamamatsu (MPPC)
as electron detector and current amplifier. Thanks to this result Hamamatsu
realized two VSiPMT industrial prototypes. In this work, we present the results
of a full characterization of the VSiPMT prototype
Photodoping and in-gap interface states across the metal-insulator transition in LaAlO3/SrTiO3 heterostructures
By using scanning tunneling microscopy/spectroscopy we show that the interface between LaAlO3 and SrTiO3 band insulators is characterized by in-gap interface states. These features were observed in insulating as well as conducting LaAlO3/SrTiO3 bilayers. The data show how the interface density of states evolves across the insulating to metal transition, demonstrating that nanoscale electronic inhomogeneities in the system are induced by spatially localized electrons
Predicting early and delayed bleedings in children who undergo adeno-tonsillectomy surgery. Is it really possible?
Eumelanin Graphene-Like Integration: The Impact on Physical Properties and Electrical Conductivity
The recent development of eumelanin pigment-based blends integrating "classical" organic conducting materials is expanding the scope of eumelanin in bioelectronics. Beyond the achievement of high conductivity level, another major goal lays in the knowledge and feasible control of structure/properties relationship. We systematically investigated different hybrid materials prepared by in situ polymerization of the eumelanin precursor 5,6-dihydroxyindole (DHI) in presence of various amounts of graphene-like layers. Spectroscopic studies performed by solid state nuclear magnetic resonance (ss-NMR), x-ray photoemission, and absorption spectroscopies gave a strong indication of the direct impact that the integration of graphene-like layers into the nascent polymerized DHI-based eumelanin has on the structural organization of the pigment itself, while infrared, and photoemission spectroscopies indicated the occurrence of negligible changes as concerns the chemical units. A tighter packing of the constituent units could represent a strong factor responsible for the observed improved electrical conductivity of the hybrid materials, and could be possible exploited as a tool for electrical conductivity tuning
- …
