60 research outputs found

    Validation of fabric-based thigh-wearable EMG sensors and oximetry for monitoring quadricep activity during strength and endurance exercises

    Get PDF
    Muscle oximetry based on near-infrared spectroscopy (NIRS) and electromyography (EMG) techniques in adherent clothing might be used to monitor the muscular activity of selected muscle groups while exercising. The fusion of these wearable technologies in sporting garments can allow the objective assessment of the quality and the quantity of the muscle activity as well as the continuous monitoring of exercise programs. Several prototypes integrating EMG and NIRS have been developed previously; however, most devices presented the limitations of not measuring regional muscle oxyhemoglobin saturation and did not embed textile sensors for EMG. The purpose of this study was to compare regional muscle oxyhemoglobin saturation and surface EMG data, measured under resting and dynamic conditions (treadmill run and strength exercises) by a recently developed wearable integrated quadriceps muscle oximetry/EMG system adopting smart textiles for EMG, with those obtained by using two “gold standard” commercial instrumentations for EMG and muscle oximetry. The validity and agreement between the wearable integrated muscle oximetry/EMG system and the “gold standard” instrumentations were assessed by using the Bland-Altman agreement plots to determine the bias. The results support the validity of the data provided by the wearable electronic garment developed purposely for the quadriceps muscle group and suggest the potential of using such device to measure strength and endurance exercises in vivo in various populations

    Neuromuscular strategies in stretch–shortening exercises with increasing drop heights: The role of muscle coactivation in leg stiffness and power propulsion

    Get PDF
    When applying drop jump exercises, knowing the magnitude of the stimulus is fundamental to stabilize the leg joints and to generate movements with the highest power. The effects of different drop heights on leg muscles coactivation, leg stiffness and power propulsion were investigated in fifteen sport science students. Drop jumps from heights of 20, 30, 40, 50, and 60 cm in a random order were performed on a force platform. During each drop jump, the ground reaction force, knee angle displacement, and synchronized surface-electromyography root-mean-square (sEMGRMS) activity (vastus lateralis, VL; vastus medialis, VM; rectus femoris, RF; biceps femoris, BF; tibialis anterior, TA and lateral gastrocnemius, LG) were recorded. The coactivation in the pre-contact phase, between VL and BF, VM and BF as well as RF and BF, was dependent on the drop height (p < 0.01; effect size (ES) ranged from 0.45 to 0.90). Leg stiffness was dependent on the drop height (p < 0.001; ES = 0.27–0.28) and was modulated by the coactivation of VM–BF (p = 0.034) and RF–BF (p = 0.046) during the braking phase. Power propulsion was also dependent on the drop height (p < 0.001; ES = 0.34); however, it was primarily modulated by the coactivation of LG–TA during the braking phase (p = 0.002). The coactivation of thigh muscles explains leg stiffness adjustments at different drop heights. On the contrary, the coactivation of shank muscles is mostly responsible for the power propulsion

    Individualized Whole-Body Vibration: Neuromuscular, Biochemical, Muscle Damage and Inflammatory Acute Responses

    Get PDF
    Objective. We aimed to investigate the acute residual hormonal, biochemical, and neuromuscular responses to a single session of individualized whole-body vibration (WBV) while maintaining a half-squat position. Methods. Twenty male sport science students voluntarily participated in the present study and were randomly assigned to an individualized WBV group (with the acceleration load determined for each participant) or an isometric group (ISOM). A double-blind, controlled parallel study design with repeated measures was employed. Results. Testosterone and growth hormone increased significantly over time in the WBV group (P <.05 and P <.01, respectively; effect size [ES] ranged from 1.00 to 1.23), whereas cortisol increased over time in both groups (P <.01; ES ranged from 1.04 and 1.36). Interleukin-6 and creatine kinase increased significantly over time only in the WBV group (P <.05; ES = 1.07). The maximal voluntary contraction decreased significantly over time in the ISOM group (P =.019; ES = 0.42), whereas in the WBV group, the decrease did not reach a significant level (P =.05). The ratio of electromyographic activity and power decreased significantly over time in the WBV group (P <.01; ES ranged from 0.57 to 0.72). Conclusion. Individualized WBV increased serum hormonal concentrations, muscle damage, and inflammation to levels similar to those induced by resistance training and hypertrophy exercises

    Flexibility and Strength Effects of Adapted Nordic Walking and Myofascial Exercises Practice in Breast Cancer Survivors and Analysis of Differences

    Get PDF
    Breast cancer treatments can elicit negative kinesiological side effects concerning both the posture and functional status of breast cancer survivors. As our body is functionally organized in myofascial meridians, physical exercise practice should favor a whole-body approach rather than a local one. The aim of the study was to investigate and compare the effects of two whole-body disciplines, i.e., adapted Nordic Walking and myofascial exercise, on the flexibility and strength performances in BCS. One hundred and sixty breast cancer survivors were trained three times per week for 12 weeks through adapted Nordic Walking or myofascial exercise. Handgrip, sit and reach, back scratch, and single leg back bridge tests and body composition were assessed at the beginning and completion of the training period. Linear mixed models showed no significant changes in body composition, whereas flexibility (p < 0.001), strength (p < 0.001), and muscle quality index (p = 0.003) changed independently from the treatment. When data modification has been analyzed according to sub-sample membership, no significant differences have been observed. Age, radiation therapy, and chemotherapy seem to have independent effects on several investigated variables. Twelve weeks of adapted myofascial exercise and Nordic Walking led to significant changes in flexibility, strength, and muscle quality in breast cancer survivors, with no apparent superiority of one approach over the other

    A Review of Pain Assessment in Pigs

    Get PDF
    There is a moral obligation to minimize pain in pigs used for human benefit. In livestock production pigs experience pain caused by management procedures, e.g. castration, and tail docking, injuries from fighting or poor housing conditions, management diseases like mastitis or Streptococcal meningitis, and at parturition. Pigs used in biomedical research undergo procedures which are regarded as painful in humans, but do not receive similar levels of analgesia, and pet pigs also experience potentially painful conditions. In all contexts, accurate pain assessment is a prerequisite in: a) the estimation of the welfare consequences of noxious interventions; and b) the development of more effective pain mitigation strategies. This narrative review identifies the sources of pain in pigs, discusses the various assessment measures currently available, and proposes directions for future investigation

    Prevalence, Outcome, and Prevention of Congenital Cytomegalovirus Infection in Neonates Born to Women with Preconception Immunity (CHILd Study)

    Get PDF
    Background: Human cytomegalovirus (HCMV) is the leading infectious cause of congenital disabilities. We designed a prospective study to investigate the rate, outcome, and risk factors of congenital CMV (cCMV) infection in neonates born to immune women, and the potential need and effectiveness of hygiene recommendations in this population. Methods: The study was composed of 2 sequential parts: an epidemiology (part 1) and a prevention (part 2) study. Performance of part 2 depended upon a cCMV rate >0.4%. Women enrolled in part 1 did not receive hygiene recommendations. Newborns were screened by HCMV DNA testing in saliva and cCMV was confirmed by urine testing. Results: Saliva swabs were positive for HCMV DNA in 45/9661 newborns and cCMV was confirmed in 18 cases. The rate of cCMV was. 19% (95% confidence interval [CI]:. 11-.29%), and 3 out of 18 infants with cCMV had symptoms of CMV at birth. Age, nationality, occupation, and contact with children were similar between mothers of infected and noninfected newborns. Twin pregnancy (odds ratio [OR]: 7.2; 95% CI: 1.7-32.2; P =. 037) and maternal medical conditions (OR: 3.9; 95% CI: 1.5-10.1; P =. 003) appeared associated with cCMV. Given the rate of cCMV was lower than expected, the prevention part of the study was cancelled. Conclusions: Newborns from women with preconception immunity have a low rate of cCMV, which appears to be mostly due to reactivation of the latent virus. Therefore, serological screening in childbearing age would be pivotal to identify HCMV-seropositive women, whose newborns have a low risk of cCMV. Clinical trials registration: www.clinicaltrials.gov (NCT03973359)
    corecore