6,844 research outputs found
LHC and dark matter signals of Z' bosons
We customize the simulation code FEWZ (Fully Exclusive W, Z Production) to
study Z' production at the LHC for both \sqrt{s}=8 TeV and 14 TeV. Using the
results of our simulation for several standard benchmark Z' models, we derive a
semi-empirical expression for the differential cross section, that permits the
determination of Z' couplings in a model-independent manner. We evaluate cross
sections and other observables for large classes of models, including the
common E_6, left-right and B-L models, as a function of model parameters. We
also consider a hidden sector Z' that couples to standard model fermions via
kinetic and mass mixing and serves as a mediator of isospin-violating
interactions with dark matter. We combine the results of LHC Z' searches and
dark matter direct detection experiments with global electroweak data to obtain
mass-dependent constraints on the model parameters.Comment: 30 pages, 19 figures, 2 tables. Published versio
Dynamical mean-field equations for strongly interacting fermionic atoms in a potential trap
We derive a set of dynamical mean-field equations for strongly interacting
fermionic atoms in a potential trap across a Feshbach resonance. Our derivation
is based on a variational ansatz, which generalizes the crossover wavefunction
to the inhomogeneous case, and the assumption that the order parameter is
slowly varying over the size of the Cooper pairs. The equations reduce to a
generalized time-dependent Gross-Pitaevskii equation on the BEC side of the
resonance. We discuss an iterative method to solve these mean-field equations,
and present the solution for a harmonic trap as an illustrating example to
self-consistently verify the approximations made in our derivation.Comment: replaced with the published versio
Willingness-to-Pay for Improved Air Quality in Hamilton-Wentworth: A Choice Experiment
Prepared for Hamilton-Wentworth Air Quality Initiative pursuant to a memorandum of understanding among McMaster University, the Ontario Ministry of Environment and Energy and the Regional Municipality of Hamilton-Wentworth, dated November 5, 1996.
Sensing Subjective Well-being from Social Media
Subjective Well-being(SWB), which refers to how people experience the quality
of their lives, is of great use to public policy-makers as well as economic,
sociological research, etc. Traditionally, the measurement of SWB relies on
time-consuming and costly self-report questionnaires. Nowadays, people are
motivated to share their experiences and feelings on social media, so we
propose to sense SWB from the vast user generated data on social media. By
utilizing 1785 users' social media data with SWB labels, we train machine
learning models that are able to "sense" individual SWB from users' social
media. Our model, which attains the state-by-art prediction accuracy, can then
be used to identify SWB of large population of social media users in time with
very low cost.Comment: 12 pages, 1 figures, 2 tables, 10th International Conference, AMT
2014, Warsaw, Poland, August 11-14, 2014. Proceeding
Review of Territory: On the Development of Landscape and City by ETH Studio Basel: Contemporary City Institute. With contributions by Roger Diener, Liisa Gunnarsson, Mathias Gunz, Vesna Jovanović, Marcel Meili, Christan Müller Inderbitzin, and Christian Schmid
Book review of Territory: On the Development of Landscape and City by ETH Studio Basel: Contemporary City Institute
Accurate Evolutions of Orbiting Binary Black Holes
We present a detailed analysis of binary black hole evolutions in the last orbit and demonstrate consistent and convergent results for the trajectories of the individual bodies. The gauge choice can significantly affect the overall accuracy of the evolution. It is possible to reconcile certain gauge-dependent discrepancies by examining the convergence limit. We illustrate these results using an initial data set recently evolved by Brügmann et al. [Phys. Rev. Lett. 92, 211101 (2004)]. For our highest resolution and most accurate gauge, we estimate the duration of this data set's last orbit to be approximately 59MADM
Ramping fermions in optical lattices across a Feshbach resonance
We study the properties of ultracold Fermi gases in a three-dimensional
optical lattice when crossing a Feshbach resonance. By using a zero-temperature
formalism, we show that three-body processes are enhanced in a lattice system
in comparison to the continuum case. This poses one possible explanation for
the short molecule lifetimes found when decreasing the magnetic field across a
Feshbach resonance. Effects of finite temperatures on the molecule formation
rates are also discussed by computing the fraction of double-occupied sites.
Our results show that current experiments are performed at temperatures
considerably higher than expected: lower temperatures are required for
fermionic systems to be used to simulate quantum Hamiltonians. In addition, by
relating the double occupancy of the lattice to the temperature, we provide a
means for thermometry in fermionic lattice systems, previously not accessible
experimentally. The effects of ramping a filled lowest band across a Feshbach
resonance when increasing the magnetic field are also discussed: fermions are
lifted into higher bands due to entanglement of Bloch states, in good agreement
with recent experiments.Comment: 9 pages, 7 figure
A Massive Data Parallel Computational Framework for Petascale/Exascale Hybrid Computer Systems
Heterogeneous systems are becoming more common on High Performance Computing
(HPC) systems. Even using tools like CUDA and OpenCL it is a non-trivial task
to obtain optimal performance on the GPU. Approaches to simplifying this task
include Merge (a library based framework for heterogeneous multi-core systems),
Zippy (a framework for parallel execution of codes on multiple GPUs), BSGP (a
new programming language for general purpose computation on the GPU) and
CUDA-lite (an enhancement to CUDA that transforms code based on annotations).
In addition, efforts are underway to improve compiler tools for automatic
parallelization and optimization of affine loop nests for GPUs and for
automatic translation of OpenMP parallelized codes to CUDA.
In this paper we present an alternative approach: a new computational
framework for the development of massively data parallel scientific codes
applications suitable for use on such petascale/exascale hybrid systems built
upon the highly scalable Cactus framework. As the first non-trivial
demonstration of its usefulness, we successfully developed a new 3D CFD code
that achieves improved performance.Comment: Parallel Computing 2011 (ParCo2011), 30 August -- 2 September 2011,
Ghent, Belgiu
Paired state in an integrable spin-1 boson model
An exactly solvable model describing the low density limit of the spin-1
bosons in a one-dimensional optical lattice is proposed. The exact Bethe ansatz
solution shows that the low energy physics of this system is described by a
quantum liquid of spin singlet bound pairs. Motivated by the exact results, a
mean-field approach to the corresponding three-dimensional system is carried
out. Condensation of singlet pairs and coexistence with ordinary Bose-Einstein
condensation are predicted.Comment: 6 pages, 1 figure, Revised versio
- …
