2,483 research outputs found

    Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection

    Get PDF
    We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns using a flexible Gibbs point process model to directly characterise point-to-point interactions at different spatial scales. By using the Gibbs framework significant interactions can also be captured at small scales. Subsequently, the Gibbs point process is fitted using a pseudo-likelihood approximation, and we select significant interactions automatically using the group lasso penalty with this likelihood approximation. Thus we estimate the multivariate interactions stably even in this setting. We demonstrate the feasibility of the method with a simulation study and show its power by applying it to a large and complex rainforest plant population data set of 83 species

    Longitudinal LASSO: Jointly Learning Features and Temporal Contingency for Outcome Prediction

    Full text link
    Longitudinal analysis is important in many disciplines, such as the study of behavioral transitions in social science. Only very recently, feature selection has drawn adequate attention in the context of longitudinal modeling. Standard techniques, such as generalized estimating equations, have been modified to select features by imposing sparsity-inducing regularizers. However, they do not explicitly model how a dependent variable relies on features measured at proximal time points. Recent graphical Granger modeling can select features in lagged time points but ignores the temporal correlations within an individual's repeated measurements. We propose an approach to automatically and simultaneously determine both the relevant features and the relevant temporal points that impact the current outcome of the dependent variable. Meanwhile, the proposed model takes into account the non-{\em i.i.d} nature of the data by estimating the within-individual correlations. This approach decomposes model parameters into a summation of two components and imposes separate block-wise LASSO penalties to each component when building a linear model in terms of the past τ\tau measurements of features. One component is used to select features whereas the other is used to select temporal contingent points. An accelerated gradient descent algorithm is developed to efficiently solve the related optimization problem with detailed convergence analysis and asymptotic analysis. Computational results on both synthetic and real world problems demonstrate the superior performance of the proposed approach over existing techniques.Comment: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 201

    Disease prevention versus data privacy : using landcover maps to inform spatial epidemic models

    Get PDF
    The availability of epidemiological data in the early stages of an outbreak of an infectious disease is vital for modelers to make accurate predictions regarding the likely spread of disease and preferred intervention strategies. However, in some countries, the necessary demographic data are only available at an aggregate scale. We investigated the ability of models of livestock infectious diseases to predict epidemic spread and obtain optimal control policies in the event of imperfect, aggregated data. Taking a geographic information approach, we used land cover data to predict UK farm locations and investigated the influence of using these synthetic location data sets upon epidemiological predictions in the event of an outbreak of foot-and-mouth disease. When broadly classified land cover data were used to create synthetic farm locations, model predictions deviated significantly from those simulated on true data. However, when more resolved subclass land use data were used, moderate to highly accurate predictions of epidemic size, duration and optimal vaccination and ring culling strategies were obtained. This suggests that a geographic information approach may be useful where individual farm-level data are not available, to allow predictive analyses to be carried out regarding the likely spread of disease. This method can also be used for contingency planning in collaboration with policy makers to determine preferred control strategies in the event of a future outbreak of infectious disease in livestock

    Combinatorial quorum sensing allows bacteria to resolve their social and physical environment

    Get PDF
    Quorum sensing (QS) is a cell–cell communication system that controls gene expression in many bacterial species, mediated by diffusible signal molecules. Although the intracellular regulatory mechanisms of QS are often well-understood, the functional roles of QS remain controversial. In particular, the use of multiple signals by many bacterial species poses a serious challenge to current functional theories. Here, we address this challenge by showing that bacteria can use multiple QS signals to infer both their social (density) and physical (mass-transfer) environment. Analytical and evolutionary simulation models show that the detection of, and response to, complex social/physical contrasts requires multiple signals with distinct half-lives and combinatorial (nonadditive) responses to signal concentrations. We test these predictions using the opportunistic pathogen Pseudomonas aeruginosa and demonstrate significant differences in signal decay betweeallyn its two primary signal molecules, as well as diverse combinatorial responses to dual-signal inputs. QS is associated with the control of secreted factors, and we show that secretome genes are preferentially controlled by synergistic “AND-gate” responses to multiple signal inputs, ensuring the effective expression of secreted factors in high-density and low mass-transfer environments. Our results support a new functional hypothesis for the use of multiple signals and, more generally, show that bacteria are capable of combinatorial communication

    Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity.

    Get PDF
    Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years

    Spatial vegetation patterns and neighborhood competition among woody plants in an East African savanna

    Get PDF
    The majority of research on savanna vegetation dynamics has focused on the coexistence of woody and herbaceous vegetation. Interactions among woody plants in savannas are relatively poorly understood. We present data from a 10-year longitudinal study of spatially explicit growth patterns of woody vegetation in an East African savanna following exclusion of large herbivores and in the absence of fire. We examined plant spatial patterns and quantified the degree of competition among woody individuals. Woody plants in this semi-arid savanna exhibit strongly clumped spatial distributions at scales of 1 - 5 m. However, analysis of woody plant growth rates relative to their conspecific and heterospecific neighbors revealed evidence for strong competitive interactions at neighborhood scales of up to 5 m for most woody plant species. Thus, woody plants were aggregated in clumps despite significantly decreased growth rates in close proximity to neighbors, indicating that the spatial distribution of woody plants in this region depends on dispersal and establishment processes rather than on competitive, density-dependent mortality. However, our documentation of suppressive effects of woody plants on neighbors also suggests a potentially important role for tree-tree competition in controlling vegetation structure and indicates that the balanced-competition hypothesis may contribute to well-known patterns in maximum tree cover across rainfall gradients in Africa

    Geostatistical inference under preferential sampling

    Get PDF
    Geostatistics involves the fitting of spatially continuous models to spatially discrete data (Chil`es and Delfiner, 1999). Preferential sampling arises when the process that determines the data-locations and the process being modelled are stochastically dependent. Conventional geostatistical methods assume, if only implicitly, that sampling is non-preferential. However, these methods are often used in situations where sampling is likely to be preferential. For example, in mineral exploration samples may be concentrated in areas thought likely to yield high-grade ore. We give a general expression for the likelihood function of preferentially sampled geostatistical data, and describe how this can be evaluated approximately using Monte Carlo methods. We present a model for preferential sampling, and demonstrate through simulated examples that ignoring preferential sampling can lead to misleading inferences. We describe an application of the model to a set of bio-monitoring data from Galicia, northern Spain, in which making allowance for preferential sampling materially changes the results of the analysis.This work was supported by the UK Engineering and Physical Sciences Research Council through the award of a Senior Fellowship to Peter Diggle.We thank the Ecotoxicology Group, University of Santiago de Compostela, for permission to use the Galicia data and, in particular, Jose Angel Fernandez, for helpful discussions concerning the data.We also thank Havard Rue for advice on efficient conditional simulation of spatially continuous Gaussian processes

    Rapid Visualisation of Microarray Copy Number Data for the Detection of Structural Variations Linked to a Disease Phenotype

    Get PDF
    Whilst the majority of inherited diseases have been found to be caused by single base substitutions, small insertions or deletions (<1Kb), a significant proportion of genetic variability is due to copy number variation (CNV). The possible role of CNV in monogenic and complex diseases has recently attracted considerable interest. However, until the development of whole genome, oligonucleotide micro-arrays, designed specifically to detect the presence of copy number variation, it was not easy to screen an individual for the presence of unknown deletions or duplications with sizes below the level of sensitivity of optical microscopy (3–5 Mb). Now that currently available oligonucleotide micro-arrays have in excess of a million probes, the problem of copy number analysis has moved from one of data production to that of data analysis. We have developed CNViewer, to identify copy number variation that co-segregates with a disease phenotype in small nuclear families, from genome-wide oligonucleotide micro-array data. This freely available program should constitute a useful addition to the diagnostic armamentarium of clinical geneticists

    Contrast estimation for parametric stationary determinantal point processes

    Get PDF
    We study minimum contrast estimation for parametric stationary determi-nantal point processes. These processes form a useful class of models for repulsive (or regular, or inhibitive) point patterns and are already applied in numerous statistical applications. Our main focus is on minimum contrast methods based on the Ripley's K-function or on the pair correlation function. Strong consistency and asymptotic normality of theses procedures are proved under general conditions that only concern the existence of the process and its regularity with respect to the parameters. A key ingredient of the proofs is the recently established Brillinger mixing property of stationary determinantal point processes. This work may be viewed as a complement to the study of Y. Guan and M. Sherman who establish the same kind of asymptotic properties for a large class of Cox processes, which in turn are models for clustering (or aggregation)

    Live to cheat another day: bacterial dormancy facilitates the social exploitation of beta-lactamases

    Get PDF
    The breakdown of antibiotics by β-lactamases may be cooperative, since resistant cells can detoxify their environment and facilitate the growth of susceptible neighbours. However, previous studies of this phenomenon have used artificial bacterial vectors or engineered bacteria to increase the secretion of β-lactamases from cells. Here, we investigated whether a broad-spectrum β-lactamase gene carried by a naturally occurring plasmid (pCT) is cooperative under a range of conditions. In ordinary batch culture on solid media, there was little or no evidence that resistant bacteria could protect susceptible cells from ampicillin, although resistant colonies could locally detoxify this growth medium. However, when susceptible cells were inoculated at high densities, late-appearing phenotypically susceptible bacteria grew in the vicinity of resistant colonies. We infer that persisters, cells that have survived antibiotics by undergoing a period of dormancy, founded these satellite colonies. The number of persister colonies was positively correlated with the density of resistant colonies and increased as antibiotic concentrations decreased. We argue that detoxification can be cooperative under a limited range of conditions: if the toxins are bacteriostatic rather than bacteridical; or if susceptible cells invade communities after resistant bacteria; or if dormancy allows susceptible cells to avoid bactericides. Resistance and tolerance were previously thought to be independent solutions for surviving antibiotics. Here, we show that these are interacting strategies: the presence of bacteria adopting one solution can have substantial effects on the fitness of their neighbours
    corecore