765 research outputs found
\u3cem\u3eBoring\u3c/em\u3e Lessons: Defining the Limits of a Teacher\u27s First Amendment Right to Speak Through the Curriculum
Margaret Boring\u27s classes were anything but boring. She taught Advanced Acting at Owen High School in rural Buncombe County, North Carolina, and her classes\u27 performances regularly won regional and state awards. In the fall of 1991, Ms. Boring chose a controversial play, Independence by Lee Blessing, for her students to perform. Independence powerfully depicts the dynamics within a dysfunctional, single-parent family - a divorced mother and three daughters; one a lesbian, another pregnant with an illegitimate child. Prior to the first performance at the school, Ms. Boring informed the principal of the play\u27s title but not its content. After the presentation of the play, she was transferred to a middle school. Viewing her transfer as a demotion, she filed suit, claiming that the First Amendment protected her decision to teach controversial material. A federal trial court dismissed her complaint for failure to state a claim. On appeal, a three-judge panel of the Fourth Circuit reversed the trial court, finding that Ms. Boring\u27s choice of the play was speech protected by the First Amendment. Later, a sharply divided Fourth Circuit, sitting en banc, split 7-6 to reverse the panel decision, finding that curricular speech garners no First Amendment protection
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation.
Adult somatic tissues have proven difficult to expand in vitro, largely because of the complexity of recreating appropriate environmental signals in culture. We have overcome this problem recently and developed culture conditions for adult stem cells that allow the long-term expansion of adult primary tissues from small intestine, stomach, liver and pancreas into self-assembling 3D structures that we have termed 'organoids'. We provide a detailed protocol that describes how to grow adult mouse and human liver and pancreas organoids, from cell isolation and long-term expansion to genetic manipulation in vitro. Liver and pancreas cells grow in a gel-based extracellular matrix (ECM) and a defined medium. The cells can self-organize into organoids that self-renew in vitro while retaining their tissue-of-origin commitment, genetic stability and potential to differentiate into functional cells in vitro (hepatocytes) and in vivo (hepatocytes and endocrine cells). Genetic modification of these organoids opens up avenues for the manipulation of adult stem cells in vitro, which could facilitate the study of human biology and allow gene correction for regenerative medicine purposes. The complete protocol takes 1-4 weeks to generate self-renewing 3D organoids and to perform genetic manipulation experiments. Personnel with basic scientific training can conduct this protocol.LB is supported by an EMBO Postdoctoral fellowship (EMBO ALTF 794-2014). CH is supported by a Cambridge Stem Cell Institute Seed Fund award and the Herchel Smith Fund. BK is supported by a Sir Henry Dale Fellowship from the Wellcome Trust and the Royal Society. MH is a Wellcome Trust Sir Henry Dale Fellow and is jointly funded by the Wellcome Trust and the Royal Society (104151/Z/14/Z).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nprot.2016.097
p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors
Homology between p63 and p53 has suggested that these proteins might function similarly. However, the majority of data from human tumors have not supported a similar role for p63 in tumor suppression. To investigate this issue, we studied spontaneous tumorigenesis in p63+/- mice in both WT and p53-compromised backgrounds. We found that p63+/- mice were not tumor prone and mice heterozygous for both p63 and p53 had fewer tumors than p53+/- mice. The rare tumors that developed in mice with compromised p63 were also distinct from those of p53+/- mice. Furthermore, p63+/- mice were not prone to chemically induced tumorigenesis, and p63 expression was maintained in carcinomas. These findings demonstrate that, in agreement with data from human tumors, p63 plays a markedly different biological role in cancer than p53
Astrocytes derived from p53-deficient mice provide a multistep in vitro model for development of malignant gliomas.
Loss or mutation of p53 is thought to be an early event in the malignant transformation of many human astrocytic tumors. To better understand the role of p53 in their growth and transformation, we developed a model employing cultured neonatal astrocytes derived from mice deficient in one (p53 +/-) or both (p53 -/-) p53 alleles, comparing them with wild-type (p53 +/+) cells. Studies of in vitro and in vivo growth and transformation were performed, and flow cytometry and karyotyping were used to correlate changes in growth with genomic instability. Early-passage (EP) p53 -/- astrocytes achieved higher saturation densities and had more rapid growth than EP p53 +/- and +/+ cells. The EP p53 -/- cells were not transformed, as they were unable to grow in serum-free medium or in nude mice. With continued passaging, p53 -/- cells exhibited a multistep progression to a transformed phenotype. Late-passage p53 -/- cells achieved saturation densities 50 times higher than those of p53 +/+ cells and formed large, well-vascularized tumors in nude mice. p53 +/- astrocytes exhibited early loss of the remaining wild-type p53 allele and then evolved in a manner phenotypically similar to p53 -/- astrocytes. In marked contrast, astrocytes retaining both wild-type p53 alleles never exhibited a transformed phenotype and usually senesced after 7 to 10 passages. Dramatic alterations in ploidy and karyotype occurred and were restricted to cells deficient in wild-type p53 following repeated passaging. The results of these studies suggest that loss of wild-type p53 function promotes genomic instability, accelerated growth, and malignant transformation in astrocytes
- …
