1,796 research outputs found

    CP Violation from 5-dimensional QED

    Full text link
    It has been shown that QED in (1+4)-dimensional space-time, with the fifth dimension compactified on a circle, leads to CP violation (CPV). Depending on fermionic boundary conditions, CPV may be either explicit (through the Scherk--Schwarz mechanism), or spontaneous (via the Hosotani mechanism). The fifth component of the gauge field acquires (at the one-loop level) a non-zero vacuum expectation value. In the presence of two fermionic fields, this leads to spontaneous CPV in the case of CP-symmetric boundary conditions. Phenomenological consequences are illustrated by a calculation of the electric dipole moment for the fermionic zero-modes.Comment: 11 pages, 2 figure

    Higgs Boson Bounds in Three and Four Generation Scenarios

    Full text link
    In light of recent experimental results, we present updated bounds on the lightest Higgs boson mass in the Standard Model (SM) and in the Minimal Supersymmetric extension of the Standard Model (MSSM). The vacuum stability lower bound on the pure SM Higgs boson mass when the SM is taken to be valid up to the Planck scale lies above the MSSM lightest Higgs boson mass upper bound for a large amount of SUSY parameter space. If the lightest Higgs boson is detected with a mass M_{H} < 134 GeV (150 GeV) for a top quark mass M_{top} = 172 GeV (179 GeV), it may indicate the existence of a fourth generation of fermions. The region of inconsistency is removed and the MSSM is salvagable for such values of M_{H} if one postulates the existence of a fourth generation of leptons and quarks with isodoublet degenerate masses M_{L} and M_{Q} such that 60 GeV 170 GeV.Comment: 7 pages, 4 figures. To be published in Physical Review

    Bounds on the lightest Higgs boson mass with three and four fermion generations

    Get PDF
    We present lower bounds on the Higgs boson mass in the Standard Model with three and four fermion generations SM(3,4), as well as upper bounds on the lightest Higgs boson mass in the minimal supersymmetric extension of the SM with three and four generations MSSM(3,4). Our analysis utilizes the SM(3,4) renormalization-group-improved one-loop effective potential of the Higgs boson to find the upper bounds on the Higgs mass in the MSSM(3,4) while the lower bounds in the SM(3,4) are derived from considerations of vacuum stability. All the bounds increase as the degenerate fourth generation mass increases, providing more room in theory space that respects the increasing experimental lower limit of the Higgs mass.Comment: 24 pages, 10 figures, Some additional discussion added. Final version to be published in International Journal of Modern Physics

    A Real-Time Energy Monitor System for the Ipns Linac

    Get PDF
    Injected beam energy and energy spread are critical parameters affecting the performance of our rapid cycling synchrotron (RCS). A real-time energy monitoring system is being installed to examine the H- beam out of the Intense Pulsed Neutron Source (IPNS) 50 MeV linac. The 200 MHz Alvarez linac serves as the injector for the 450 MeV IPNS RCS. The linac provides an 80 ms macropulse of approximately 3x1012 H- ions 30 times per second for coasting-beam injection into the RCS. The RCS delivers protons to a heavy-metal spallation neutron target for material science studies. Using a number of strip-line beam position monitors (BPMs) distributed along the 50 MeV transport line from the linac to the RCS, fast signals from the strip lines are digitized and transferred to a computer which performs an FFT. Corrections for cable attenuation and oscilloscope bandwidth are made in the frequency domain. Rectangular pulse train phasing (RPTP) is imposed on the spectra prior to obtaining the inverse transform (IFFT). After the IFFT, the reconstructed time-domain signal is analyzed for pulse width as it progresses along the transport line. Time-of-flight measurements of the BPM signals provide beam energy. Finally, using the 3-size measurement technique, the longitudinal emittance and energy spread of the beam are determined

    CP Violation from Dimensional Reduction: Examples in 4+1 Dimensions

    Get PDF
    We provide simple examples of the generation of complex mass terms and hence CP violation through dimensional reduction.Comment: 6 pages, typos corrected, 1 reference adde

    The hidden sterile neutrino and the (2+2) sum rule

    Full text link
    We discuss oscillations of atmospheric and solar neutrinos into sterile neutrinos in the 2+2 scheme. A zeroth order sum rule requires equal probabilities for oscillation into nu_s and nu_tau in the solar+atmospheric data sample. Data does not favor this claim. Here we use scatter plots to assess corrections of the zeroth order sum rule when (i) the 4 x 4 neutrino mixing matrix assumes its full range of allowed values, and (ii) matter effects are included. We also introduce a related "product rule". We find that the sum rule is significantly relaxed, due to both the inclusion of the small mixing angles (which provide a short-baseline contribution) and to matter effects. The product rule is also dramatically altered. The observed relaxation of the sum rule weakens the case against the 2+2 model and the sterile neutrino. To invalidate the 2+2 model, a global fit to data with the small mixing angles included seems to be required.Comment: 43 pages, 11 figures (same as v2, accidental replacement

    Report of the Beyond the MSSM Subgroup for the Tevatron Run II SUSY/Higgs Workshop

    Get PDF
    There are many low-energy models of supersymmetry breaking parameters which are motivated by theoretical and experimental considerations. Here, we discuss some of the lesser-known theories of low-energy supersymmetry, and outline their phenomenological consequences. In some cases, these theories have more gauge symmetry or particle content than the Minimal Supersymmetric Standard Model. In other cases, the parameters of the Lagrangian are unusual compared to commonly accepted norms (e.g., Wino LSP, heavy gluino LSP, light gluino, etc.). The phenomenology of supersymmetry varies greatly between the different models. Correspondingly, particular aspects of the detectors assume greater or lesser importance. Detection of supersymmetry and the determination of all parameters may well depend upon having the widest possible view of supersymmetry phenomenology.Comment: 78 pages, 49 figures, to appear in the Proceedings of the Tevatron Run II SUSY/Higgs Workshop. Editor: J. F. Gunion; BTMSSM Convenors: M. Chertok, H. Dreiner, G. Landsberg, J. F. Gunion, J.D. Well

    A Large Solid Angle Study of Pion Absorption on He3

    Full text link
    Measurements have been made of pi+ absorption on He3 at T_pi+ = 118, 162, and 239 MeV using the Large Acceptance Detector System (LADS). The nearly 4pi solid angle coverage of this detector minimizes uncertainties associated with extrapolations over unmeasured regions of phase space. The total absorption cross section is reported. In addition, the total cross section is divided into components in which only two or all three nucleons play a significant role in the process. These are the first direct measurements of the total and three nucleon absorption cross sections.Comment: 8 pages, LaTeX. 3 figures, anonymous ftp MITLNS.MIT.EDU, cd LADS. Submitted to PRL. PSI-PR-94-11 (Paul Scherrer Institute) and LNS 94-56 (MIT Lab. for Nucl. Sci.

    Flavor violation and extra dimensions

    Full text link
    We analyze new sources of flavor violation in models with extra dimensions. We focus on three major classes of five dimensional models: models with universal extra dimension, models with split fermions, and models with warped extra dimension.We study the implications of these new sources on the associate CP violating asymmetries to the rare B-decays. We show that among these models only the split fermions scenario may accommodate the recent experimental deviation between the CP asymmetry of B_d -> phi K_S and sin 2 beta.Comment: 17 pages, 3 figure
    corecore