2,937 research outputs found
The drive system of the Major Atmospheric Gamma-ray Imaging Cherenkov Telescope
The MAGIC telescope is an imaging atmospheric Cherenkov telescope, designed
to observe very high energy gamma-rays while achieving a low energy threshold.
One of the key science goals is fast follow-up of the enigmatic and short lived
gamma-ray bursts. The drive system for the telescope has to meet two basic
demands: (1) During normal observations, the 72-ton telescope has to be
positioned accurately, and has to track a given sky position with high
precision at a typical rotational speed in the order of one revolution per day.
(2) For successfully observing GRB prompt emission and afterglows, it has to be
powerful enough to position to an arbitrary point on the sky within a few ten
seconds and commence normal tracking immediately thereafter. To meet these
requirements, the implementation and realization of the drive system relies
strongly on standard industry components to ensure robustness and reliability.
In this paper, we describe the mechanical setup, the drive control and the
calibration of the pointing, as well as present measurements of the accuracy of
the system. We show that the drive system is mechanically able to operate the
motors with an accuracy even better than the feedback values from the axes. In
the context of future projects, envisaging telescope arrays comprising about
100 individual instruments, the robustness and scalability of the concept is
emphasized.Comment: 15 pages, 12 (10) figures, submitted to Astroparticle Physics, a high
resolution version of the paper (particularly fig. 1) is available at
http://publications.mppmu.mpg.de/2008/MPP-2008-101/FullText.pd
The Quasi-1D S=1/2 Antiferromagnet Cs2CuCl4 in a Magnetic Field
Magnetic excitations of the quasi-1D S=1/2 Heisenberg antiferromagnet (HAF)
Cs2CuCl4 have been measured as a function of magnetic field using neutron
scattering. For T<0.62 K and B=0 T the weak inter-chain coupling produces 3D
incommensurate ordering. Fields greater than Bc =1.66 T, but less than the
field (~8 T) required to fully align the spins, are observed to decouple the
chains, and the system enters a disordered intermediate-field phase (IFP). The
IFP excitations are in agreement with the predictions of Muller et al. for the
1D S=1/2 HAF, and Talstra and Haldane for the related 1/r^2 chain (the
Haldane-Shastry model). This behaviour is inconsistent with linear spin-wave
theory.Comment: 10 pages, 4 encapsulated postscript figures, LaTeX, to be published
in PRL, e-mail comments to [email protected]
Broadband study of blazar 1ES 1959+650 during flaring state in 2016
Aim : The nearby TeV blazar 1ES 1959+650 (z=0.047) was reported to be in
flaring state during June - July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS
collaborations. We studied the spectral energy distributions (SEDs) in
different states of the flare during MJD 57530 - 57589 using simultaneous
multiwaveband data to understand the possible broadband emission scenario
during the flare. Methods : The UV/optical and X-ray data from UVOT and XRT
respectively on board Swift and high energy -ray data from Fermi-LAT
are used to generate multiwaveband lightcurves as well as to obtain high flux
states and quiescent state SEDs. The correlation and lag between different
energy bands is quantified using discrete correlation function. The synchrotron
self Compton (SSC) model was used to reproduce the observed SEDs during flaring
and quiescent states of the source. Results : A decent correlation is seen
between X-ray and high energy -ray fluxes. The spectral hardening with
increase in the flux is seen in X-ray band. The powerlaw index vs flux plot in
-ray band indicates the different emission regions for 0.1 - 3 GeV and
3-300 GeV energy photons. Two zone SSC model satisfactorily fits the observed
broadband SEDs. The inner zone is mainly responsible for producing synchrotron
peak and high energy -ray part of the SED in all states. The second
zone is mainly required to produce less variable optical/UV and low energy
-ray emission. Conclusions : Conventional single zone SSC model does
not satisfactorily explain broadband emission during observation period
considered. There is an indication of two emission zones in the jet which are
responsible for producing broadband emission from optical to high energy
-rays.Comment: 11 pages, 12 figures, Accepted in A&
Entangled states of trapped ions allow measuring the magnetic field gradient of a single atomic spin
Using trapped ions in an entangled state we propose detecting a magnetic
dipole of a single atom at distance of a few m. This requires a
measurement of the magnetic field gradient at a level of about 10
Tesla/m. We discuss applications e.g. in determining a wide variation of
ionic magnetic moments, for investigating the magnetic substructure of ions
with a level structure not accessible for optical cooling and detection,and for
studying exotic or rare ions, and molecular ions. The scheme may also be used
for measureing spin imbalances of neutral atoms or atomic ensembles trapped by
optical dipole forces. As the proposed method relies on techniques well
established in ion trap quantum information processing it is within reach of
current technology.Comment: 4 pages, 2 fi
Quantum computations with atoms in optical lattices: marker qubits and molecular interactions
We develop a scheme for quantum computation with neutral atoms, based on the
concept of "marker" atoms, i.e., auxiliary atoms that can be efficiently
transported in state-independent periodic external traps to operate quantum
gates between physically distant qubits. This allows for relaxing a number of
experimental constraints for quantum computation with neutral atoms in
microscopic potential, including single-atom laser addressability. We discuss
the advantages of this approach in a concrete physical scenario involving
molecular interactions.Comment: 15 pages, 14 figure
PYRAMIR: Calibration and operation of a pyramid near-infrared wavefront sensor
The concept of pyramid wavefront sensors (PWFS) has been around about a
decade by now. However, there is still a great lack of characterizing
measurements that allow the best operation of such a system under real life
conditions at an astronomical telescope. In this article we, therefore,
investigate the behavior and robustness of the pyramid infrared wavefront
sensor PYRAMIR mounted at the 3.5 m telescope at the Calar Alto Observatory
under the influence of different error sources both intrinsic to the sensor,
and arising in the preceding optical system. The intrinsic errors include
diffraction effects on the pyramid edges and detector read out noise. The
external imperfections consist of a Gaussian profile in the intensity
distribution in the pupil plane during calibration, the effect of an optically
resolved reference source, and noncommon-path aberrations. We investigated the
effect of three differently sized reference sources on the calibration of the
PWFS. For the noncommon-path aberrations the quality of the response of the
system is quantified in terms of modal cross talk and aliasing. We investigate
the special behavior of the system regarding tip-tilt control. From our
measurements we derive the method to optimize the calibration procedure and the
setup of a PWFS adaptive optics (AO) system. We also calculate the total
wavefront error arising from aliasing, modal cross talk, measurement error, and
fitting error in order to optimize the number of calibrated modes for on-sky
operations. These measurements result in a prediction of on-sky performance for
various conditions
Phonon Life-times from first principles self consistent lattice dynamics
Phonon lifetime calculations from first principles usually rely on time
consuming molecular dynamics calculations, or density functional perturbation
theory (DFPT) where the zero temperature crystal structure is assumed to be
dynamically stable. Here a new and effective method for calculating phonon
lifetimes from first principles is presented, not limited to crystal structures
stable at 0 K, and potentially much more effective than most corresponding
molecular dynamics calculations. The method is based on the recently developed
self consistent lattice dynamical method and is here tested by calculating the
bcc phase phonon lifetimes of Li, Na, Ti and Zr, as representative examples.Comment: 4 pages, 4 figur
Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses
We examine correlated electron and doubly charged ion momentum spectra from
strong field double ionization of Neon employing intense elliptically polarized
laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion
momentum distributions has been observed. Using a 3D semiclassical model, we
demonstrate that our observations reflect the sub-cycle dynamics of the
recollision process. Our work reveals a general physical picture for
recollision-impact double ionization with elliptical polarization, and
demonstrates the possibility of ultrafast control of the recollision dynamics.Comment: 6 pages, 5 figure
Molecular frame photoelectron angular distribution for oxygen 1s photoemission from CO_2 molecules
We have measured photoelectron angular distributions in the molecular frame (MF-PADs) for O 1s photoemission from CO2, using photoelectron-O+–CO+ coincidence momentum imaging. Results for the molecular axis at 0, 45 and 90° to the electric vector of the light are reported. The major features of the MF-PADs are fairly well reproduced by calculations employing a relaxed-core Hartree–Fock approach. Weak asymmetric features are seen through a plane perpendicular to the molecular axis and attributed to symmetry lowering by anti-symmetric stretching motion
A single trapped atom in front of an oscillating mirror
We investigate the Wigner-Weisskopf decay of a two level atom in front of an
oscillating mirror. This work builds on and extends previous theoretical and
experimental studies of the effects of a static mirror on spontaneous decay and
resonance fluorescence. The spontaneously emitted field is inherently
non-stationary due to the time-dependent boundary conditions and in order to
study its spectral distribution we employ the operational definition of the
spectrum of non-stationary light due to the seminal work by Eberly and
Wodkiewicz. We find a rich dependence of this spectrum as well as of the
effective decay rates and level shifts on the mirror-atom distance and on the
amplitude and frequency of oscillations of the mirror. The results presented
here provide the basis for future studies of more complex setups, where the
motion of the atom and/or the mirror are included as quantum degrees of
freedom.Comment: 10 pages, 12 figures, contribution to the special issue in Optics
Communications devoted to Krzysztof Wodkiewicz's memor
- …
