1,063 research outputs found
Advanced bearing study. Part 2: Bearing tests
Tests of ball bearings of various material combinations in liquid hydroge
Voice control of the space shuttle video system
A pilot voice control system developed at the Jet Propulsion Laboratory (JPL) to test and evaluate the feasibility of controlling the shuttle TV cameras and monitors by voice commands utilizes a commercially available discrete word speech recognizer which can be trained to the individual utterances of each operator. Successful ground tests were conducted using a simulated full-scale space shuttle manipulator. The test configuration involved the berthing, maneuvering and deploying a simulated science payload in the shuttle bay. The handling task typically required 15 to 20 minutes and 60 to 80 commands to 4 TV cameras and 2 TV monitors. The best test runs show 96 to 100 percent voice recognition accuracy
Far-infrared polarimetry from the Stratospheric Observatory for Infrared Astronomy
Multi-wavelength imaging polarimetry at far-infrared wavelengths has proven
to be an excellent tool for studying the physical properties of dust, molecular
clouds, and magnetic fields in the interstellar medium. Although these
wavelengths are only observable from airborne or space-based platforms, no
first-generation instrument for the Stratospheric Observatory for Infrared
Astronomy (SOFIA) is presently designed with polarimetric capabilities. We
study several options for upgrading the High-resolution Airborne Wideband
Camera (HAWC) to a sensitive FIR polarimeter. HAWC is a 12 x 32 pixel bolometer
camera designed to cover the 53 - 215 micron spectral range in 4 colors, all at
diffraction-limited resolution (5 - 21 arcsec). Upgrade options include: (1) an
external set of optics which modulates the polarization state of the incoming
radiation before entering the cryostat window; (2) internal polarizing optics;
and (3) a replacement of the current detector array with two state-of-the-art
superconducting bolometer arrays, an upgrade of the HAWC camera as well as
polarimeter. We discuss a range of science studies which will be possible with
these upgrades including magnetic fields in star-forming regions and galaxies
and the wavelength-dependence of polarization.Comment: 12 pages, 5 figure
First Results from SPARO: Evidence for Large-Scale Toroidal Magnetic Fields in the Galactic Center
We have observed the linear polarization of 450 micron continuum emission
from the Galactic center, using a new polarimetric detector system that is
operated on a 2 m telescope at the South Pole. The resulting polarization map
extends ~ 170 pc along the Galactic plane and ~ 30 pc in Galactic latitude, and
thus covers a significant fraction of the central molecular zone. Our map shows
that this region is permeated by large-scale toroidal magnetic fields. We
consider our results together with radio observations that show evidence for
poloidal fields in the Galactic center, and with Faraday rotation observations.
We compare all of these observations with the predictions of a magnetodynamic
model for the Galactic center that was proposed in order to explain the
Galactic Center Radio Lobe as a magnetically driven gas outflow. We conclude
that the observations are basically consistent with the model.Comment: 11 pages, 2 figures, 1 table, submitted to ApJ Let
Statistical Assessment of Shapes and Magnetic Field Orientations in Molecular Clouds through Polarization Observations
We present a novel statistical analysis aimed at deriving the intrinsic
shapes and magnetic field orientations of molecular clouds using dust emission
and polarization observations by the Hertz polarimeter. Our observables are the
aspect ratio of the projected plane-of-the-sky cloud image, and the angle
between the mean direction of the plane-of-the-sky component of the magnetic
field and the short axis of the cloud image. To overcome projection effects due
to the unknown orientation of the line-of-sight, we combine observations from
24 clouds, assuming that line-of-sight orientations are random and all are
equally probable. Through a weighted least-squares analysis, we find that the
best-fit intrinsic cloud shape describing our sample is an oblate disk with
only small degrees of triaxiality. The best-fit intrinsic magnetic field
orientation is close to the direction of the shortest cloud axis, with small
(~24 deg) deviations toward the long/middle cloud axes. However, due to the
small number of observed clouds, the power of our analysis to reject
alternative configurations is limited.Comment: 14 pages, 8 figures, accepted for publication in MNRA
The Kepler Pixel Response Function
Kepler seeks to detect sequences of transits of Earth-size exoplanets
orbiting Solar-like stars. Such transit signals are on the order of 100 ppm.
The high photometric precision demanded by Kepler requires detailed knowledge
of how the Kepler pixels respond to starlight during a nominal observation.
This information is provided by the Kepler pixel response function (PRF),
defined as the composite of Kepler's optical point spread function, integrated
spacecraft pointing jitter during a nominal cadence and other systematic
effects. To provide sub-pixel resolution, the PRF is represented as a
piecewise-continuous polynomial on a sub-pixel mesh. This continuous
representation allows the prediction of a star's flux value on any pixel given
the star's pixel position. The advantages and difficulties of this polynomial
representation are discussed, including characterization of spatial variation
in the PRF and the smoothing of discontinuities between sub-pixel polynomial
patches. On-orbit super-resolution measurements of the PRF across the Kepler
field of view are described. Two uses of the PRF are presented: the selection
of pixels for each star that maximizes the photometric signal to noise ratio
for that star, and PRF-fitted centroids which provide robust and accurate
stellar positions on the CCD, primarily used for attitude and plate scale
tracking. Good knowledge of the PRF has been a critical component for the
successful collection of high-precision photometry by Kepler.Comment: 10 pages, 5 figures, accepted by ApJ Letters. Version accepted for
publication
Instrument Performance in Kepler's First Months
The Kepler Mission relies on precise differential photometry to detect the 80
parts per million (ppm) signal from an Earth-Sun equivalent transit. Such
precision requires superb instrument stability on time scales up to ~2 days and
systematic error removal to better than 20 ppm. To this end, the spacecraft and
photometer underwent 67 days of commissioning, which included several data sets
taken to characterize the photometer performance. Because Kepler has no
shutter, we took a series of dark images prior to the dust cover ejection, from
which we measured the bias levels, dark current, and read noise. These basic
detector properties are essentially unchanged from ground-based tests,
indicating that the photometer is working as expected. Several image artifacts
have proven more complex than when observed during ground testing, as a result
of their interactions with starlight and the greater thermal stability in
flight, which causes the temperature-dependent artifact variations to be on the
timescales of transits. Because of Kepler's unprecedented sensitivity and
stability, we have also seen several unexpected systematics that affect
photometric precision. We are using the first 43 days of science data to
characterize these effects and to develop detection and mitigation methods that
will be implemented in the calibration pipeline. Based on early testing, we
expect to attain Kepler's planned photometric precision over 80%-90% of the
field of view.Comment: 5 pages, 2 figures, 2 tables, Astrophysical Journal Letters, accepte
Hertz: an imaging polarimeter
The University of Chicago polarimeter, Hertz, is designed for observations at the Caltech Submillimeter Observatory in the 350 µm atmospheric window. Initial observations with this instrument, the first array polarimeter for submillimeter observations, have produced over 700 measurements at 3σ or better. This paper summarizes the characteristics of the instrument, presents examples of its performance including polarization maps of molecular clouds and regions near the Galactic center, and outlines the opportunities for improvements with emphasis on requirements for mapping widely extended sources
A survey of anisotropic energetic particle flows observed by STEREO
The Low Energy Telescopes (LETs) onboard the twin STEREO spacecraft have been measuring the anisotropies of energetic particles since before the beginning of solar cycle 24. Large unidirectional anisotropies often appear at the onset of magnetically well-connected solar energetic particle (SEP) events, suggesting beamed particles with relatively little scattering. Also, long-lasting bidirectional flows are seen during the decay phase of several SEP events. Some of these instances appear to be within interplanetary coronal mass ejections (ICMEs), as indicated by characteristics such as magnetic field rotations or bidirectional suprathermal electrons. We present preliminary findings from a survey of LET proton anisotropy observations, which illustrate that bidirectional flows appear more likely to come from directions far from the nominal Parker spiral direction than do unidirectional beams, consistent with previous studies. Individual cases that show unusual intensity depletions perpendicular to the magnetic field or pitch angle distributions otherwise indicative of magnetic mirroring are presented in more detail
A content analysis of the female TikTok influencer: how SMIs alter their image and self-presentation based on their communities.
Influencer marketing is a growing industry on social media platforms, like TikTok. Influencers have the power and authority to control the purchases and habits of their audiences, however, the communities of these followers can be just as influential. According to TikTok For Business (2021), “part of the excitement of [TikTok] is derived from people having the power to choose the spaces they want to be part of, and the content they want to interact with.” The purpose of this study is to determine if social media influencers alter their image and self-presentation based on their community. The study examines the TikTok accounts of two popular social media influencers who use TikTok to post video content for fun and share brand deals with their followers. Each of these influencers is 21 years old or younger and has an audience of mostly girls between the ages of 13 and 24. To determine if being an influencer means altering personal image on social media, researchers will examine their TikTok posts and comments to gather a deeper understanding of the SMIs when they began posting, how their content has changed, and what actions could have affected those changes
- …
