429 research outputs found

    From the gut to the peripheral tissues : the multiple effects of butyrate

    Get PDF
    Butyrate is a natural substance present in biological liquids and tissues. The present paper aims to give an update on the biological role of butyrate in mammals, when it is naturally produced by the gastrointestinal microbiota or orally ingested as a feed additive. Recent data concerning butyrate production delivery as well as absorption by the colonocytes are reported. Butyrate cannot be detected in the peripheral blood, which indicates fast metabolism in the gut wall and/or in the liver. In physiological conditions, the increase in performance in animals could be explained by the increased nutrient digestibility, the stimulation of the digestive enzyme secretions, a modification of intestinal luminal microbiota and an improvement of the epithelial integrity and defence systems. In the digestive tract, butyrate can act directly (upper gastrointestinal tract or hindgut) or indirectly (small intestine) on tissue development and repair. Direct trophic effects have been demonstrated mainly by cell proliferation studies, indicating a faster renewal of necrotic areas. Indirect actions of butyrate are believed to involve the hormono-neuro-immuno system. Butyrate has also been implicated in down-regulation of bacteria virulence, both by direct effects on virulence gene expression and by acting on cell proliferation of the host cells. In animal production, butyrate is a helpful feed additive, especially when ingested soon after birth, as it enhances performance and controls gut health disorders caused by bacterial pathogens. Such effects could be considered for new applications in human nutrition

    Antimicrobial resistance of Escherichia coli and Enterococcus faecalis in housed laying-hen flocks in Europe

    Get PDF
    The aim of this study was to determine the potential association between housing type and multiple drug resistance (MDR) in Escherichia coli and Enterococcus faecalis isolates recovered from 283 laying-hen flocks. In each flock, a cloacal swab from four hens was collected and produced 1102 E. coli and 792 E. faecalis isolates. Broth microdilution was used to test susceptibility to antimicrobials. Country and housing type interacted differently with the MDR levels of both species. In the E. coli model, housing in a raised-floor system was associated with an increased risk of MDR compared to the conventional battery system [odds ratio (OR) 2·12, 95% confidence interval (CI) 1·13-3·97)]. In the E. faecalis model the MDR levels were lower in free-range systems than in conventional battery cages (OR 0·51, 95% CI 0·27-0·94). In Belgium, ceftiofur-resistant E. coli isolates were more numerous than in the other countrie

    Survival of Salmonella serovar Typhimurium inside porcine monocytes is associated with complement binding and suppression of the production of reactive oxygen species

    Get PDF
    Macrophages are thought to play a major role in the development of Salmonella carriers in swine. It was the aim of the present study to characterize the interactions of a Salmonella serovar Typhimurium strain with porcine peripheral blood monocytes. The production of reactive oxygen species (ROS) by monocytes and the numbers of intracellularly killed bacteria differed significantly between the different pigs used. Opsonization of Salmonella bacteria with complement significantly decreased bacterial killing. Interestingly, monocytic ROS production was suppressed by metabolically active bacteria. In conclusion, binding to host complement and suppression of monocyte ROS production enable ser. Typhimurium to survive for at least 6 hours in porcine monocytes. Moreover, individual differences of porcine monocytes to produce ROS and to kill the intracellular Salmonella bacteria might account for the development of the carrier state in some pigs and not in others

    Comparison of bio-inspired algorithms applied to the coordination of mobile robots considering the energy consumption

    Get PDF
    Many applications, related to autonomous mobile robots, require to explore in an unknown environment searching for static targets, without any a priori information about the environment topology and target locations. Targets in such rescue missions can be fire, mines, human victims, or dangerous material that the robots have to handle. In these scenarios, some cooperation among the robots is required for accomplishing the mission. This paper focuses on the application of different bio-inspired metaheuristics for the coordination of a swarm of mobile robots that have to explore an unknown area in order to rescue and handle cooperatively some distributed targets. This problem is formulated by first defining an optimization model and then considering two sub-problems: exploration and recruiting. Firstly, the environment is incrementally explored by robots using a modified version of ant colony optimization. Then, when a robot detects a target, a recruiting mechanism is carried out to recruit a certain number of robots to deal with the found target together. For this latter purpose, we have proposed and compared three approaches based on three different bio-inspired algorithms (Firefly Algorithm, Particle Swarm Optimization, and Artificial Bee Algorithm). A computational study and extensive simulations have been carried out to assess the behavior of the proposed approaches and to analyze their performance in terms of total energy consumed by the robots to complete the mission. Simulation results indicate that the firefly-based strategy usually provides superior performance and can reduce the wastage of energy, especially in complex scenarios

    Elevated urinary excretion of free pyridinoline in Friesian horses suggests a breed-specific increase in collagen degradation

    Get PDF
    Background: Friesian horses are known for their high inbreeding rate resulting in several genetic diseases such as hydrocephaly and dwarfism. This last decade, several studies focused on two other presumed hereditary traits in Friesian horses: megaoesophagus and aortic rupture. The pathogenesis of these diseases remains obscure but an important role of collagen has been hypothesized. The purpose of this study was to examine possible breed-related differences in collagen catabolism. Urinary specimens from Friesian (n = 17, median age 10 years old) and Warmblood horses (n = 17, median age 10 years old) were assessed for mature collagen cross-links, i.e. pyridinoline (PYD) (=hydroxylysylpyridinoline/HP) and deoxypyridinoline (DPD) (lysylpyridinoline /LP). Solid-phase extraction was performed, followed by reversed-phase ion-paired liquid chromatography prior to tandem mass spectrometry (MS/MS) detection. Results: Mean urinary concentrations of free PYD, expressed as fPYD/creatinine ratio, were significantly higher in Friesian horses compared to Warmblood horses (28.5 ± 5.2 versus 22.2 ± 9.6 nmol/mmol, p = 0.02) while mean fDPD/creatinine ratios were similar in both horse breeds (3.0 ± 0.7 versus 4.6 ± 3.7 nmol/mmol, p = 0.09). Conclusions: Since DPD is considered a specific bone degradation marker and PYD is more widely distributed in connective tissues, the significant elevation in the mean PYD/DPD ratio in Friesian versus Warmblood horses (9.6 ± 1.6 versus 5.7 ± 1.8, p < 0.0001) suggests a soft tissue origin for the increased fPYD levels. Considering that a previous study found no differences in total collagen content between Friesian and Warmblood horses for tendon and aortic tissue, this indicates a higher rate of collagen degradation. The latter might, at least in part, explain the predisposition of Friesians to connective tissue disorders

    The influence of fatty acids on the expression of virulence genes of Salmonella Typhimurium and the colonization of pigs

    Get PDF
    Salmonella Typhimurium infections in pigs are a major source of human foodborne salmonellosis. To reduce the number of infected pigs, actdified feed or drinking water can be administrated. A study was carried out to evaluate the use of short-chain fatty acids (SCFA) and medium-chain fatty acids (MCFA) for the control of Salmonella Typhimurium infections in ptgs. Short-chain fatty acids formate, acetate, propionate and butyrate (pH 6, osm 600, cone 1 OmM) and medium-chain fatty acids caproic, caprylic and capric acid (pH6, osm 600, cone 2mM) were used

    Quality-sensitive foraging by a robot swarm through virtual pheromone trails

    Get PDF
    Large swarms of simple autonomous robots can be employed to find objects clustered at random locations, and transport them to a central depot. This solution offers system parallelisation through concurrent environment exploration and object collection by several robots, but it also introduces the challenge of robot coordination. Inspired by ants’ foraging behaviour, we successfully tackle robot swarm coordination through indirect stigmergic communication in the form of virtual pheromone trails. We design and implement a robot swarm composed of up to 100 Kilobots using the recent technology Augmented Reality for Kilobots (ARK). Using pheromone trails, our memoryless robots rediscover object sources that have been located previously. The emerging collective dynamics show a throughput inversely proportional to the source distance. We assume environments with multiple sources, each providing objects of different qualities, and we investigate how the robot swarm balances the quality-distance trade-off by using quality-sensitive pheromone trails. To our knowledge this work represents the largest robotic experiment in stigmergic foraging, and is the first complete demonstration of ARK, showcasing the set of unique functionalities it provides

    SPI-2 of Salmonella Typhimurium is not necessary for long term colonization of pigs

    Get PDF
    Unravelling the role of Salmonella virulence factors in the porcine host could greatly contribute to the development of control measures such as vaccination. The virulence genes located on the Salmonella Pathogenicity Island 2 (SPI-2) are indispensable for the induction of systemic disease and persistence in BALB/c mice. The role of this pathogenicity island in the pathogenesis of Salmonella Typhimurium infections in pigs is not documented. Therefore, in the present study, the interactions of a porcine field strain of Salmonella Typhimurium and a non-polar isogenic SPI-2 (D-ssrA) deletion mutant were compared in both in vitro and in vivo models. The ssrA mutant strain displayed decreased SPI-2 expression levels in vitro and was attenuated in a mouse model after oral inoculation. No difference was seen in the expression of SPI-1 related virulence genes. Through flowcytometric analysis, the ssrA mutant strain was found to be moderately attenuated in intracellular replication in porcine macrophages in vitro. In an infection experiment, 2 groups of 10 piglets were orally inoculated with the wild type or the ssrA mutant strain. The infection of the animals inoculated with the ssrA mutant strain followed a similar course as the animals infected with the wild type strain. At days 5 and 28 post inoculation, the animals of both groups were infected to the same extent in the gut and gut-associated lymphoid tissue, as well as in the mternal organs. These results suggest that SPI-2 of Salmonella Typhimurium may not contribute to the colonization of pigs to the same extent as it contributes to the colonization of BALB/c mice
    corecore