891 research outputs found
Strong Secrecy for Multiple Access Channels
We show strongly secret achievable rate regions for two different wiretap
multiple-access channel coding problems. In the first problem, each encoder has
a private message and both together have a common message to transmit. The
encoders have entropy-limited access to common randomness. If no common
randomness is available, then the achievable region derived here does not allow
for the secret transmission of a common message. The second coding problem
assumes that the encoders do not have a common message nor access to common
randomness. However, they may have a conferencing link over which they may
iteratively exchange rate-limited information. This can be used to form a
common message and common randomness to reduce the second coding problem to the
first one. We give the example of a channel where the achievable region equals
zero without conferencing or common randomness and where conferencing
establishes the possibility of secret message transmission. Both coding
problems describe practically relevant networks which need to be secured
against eavesdropping attacks.Comment: 55 page
Single-Cell Gene Expression Variation as A Cell-Type Specific Trait: A Study of Mammalian Gene Expression Using Single-Cell RNA Sequencing
In this dissertation, we used single-cell RNA sequencing data from five mammalian tissues to characterize patterns of gene expression across single cells, transcriptome-wide and in a cell-type-specific manner (Part 1). Additionally, we characterized single-cell RNA sequencing methods as a resource for experimental design and data analysis (Part 2).
Part 1: Differentiation of metazoan cells requires execution of different gene expression programs but recent single cell transcriptome profiling has revealed considerable variation within cells of seemingly identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. We used high quality single cell RNA sequencing for 107 single cells from five mammalian tissues, along with 30 control samples, to characterize transcriptome heterogeneity across single cells. We developed methods to filter genes for reliable quantification and to calibrate biological variation. We found evidence that ubiquitous expression across cells may be indicative of critical gene function and that, for a subset of genes, biological variability within each cell type may be regulated in order to perform dynamic functions. We also found evidence that single-cell variability of mouse pyramidal neurons was correlated with that in rats consistent with the hypothesis that levels of variation may be conserved.
Part 2: Many researchers are interested in single-cell RNA sequencing for use in identification and classification of cell types, finding rare cells, and studying single-cell expression variation; however, experimental and analytic methods for single-cell RNA sequencing are young and there is little guidance available for planning experiments and interpreting results. We characterized single-cell RNA sequencing measurements in terms of sensitivity, precision and accuracy through analysis of data generated in a collaborative control project, where known reference RNA was diluted to single-cell levels and amplified using one of three single-cell RNA sequencing protocols. All methods perform comparably overall, but individual methods demonstrate unique strengths and biases. Measurement reliability increased with expression level for all methods and we conservatively estimated measurements to be quantitative at an expression level of ~5-10 molecules
Transfer RNA-derived small RNAs in the cancer transcriptome
The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis.These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity.RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of inter-est in a‘larger’small RNA, the transfer RNA (tRNA).Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation.Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing
A realistic pattern of fermion masses from a five-dimensional SO(10) model
We provide a unified description of fermion masses and mixing angles in the
framework of a supersymmetric grand unified SO(10) model with anarchic Yukawa
couplings of order unity. The space-time is five dimensional and the extra flat
spatial dimension is compactified on the orbifold ,
leading to Pati-Salam gauge symmetry on the boundary where Yukawa interactions
are localised. The gauge symmetry breaking is completed by means of a rather
economic scalar sector, avoiding the doublet-triplet splitting problem. The
matter fields live in the bulk and their massless modes get exponential
profiles, which naturally explain the mass hierarchy of the different fermion
generations. Quarks and leptons properties are naturally reproduced by a
mechanism, first proposed by Kitano and Li, that lifts the SO(10) degeneracy of
bulk masses in terms of a single parameter. The model provides a realistic
pattern of fermion masses and mixing angles for large values of . It
favours normally ordered neutrino mass spectrum with the lightest neutrino mass
below 0.01 eV and no preference for leptonic CP violating phases. The right
handed neutrino mass spectrum is very hierarchical and does not allow for
thermal leptogenesis. We analyse several variants of the basic framework and
find that the results concerning the fermion spectrum are remarkably stable.Comment: 30 pages, 7 figures, 4 table
On the automatic construction of indistinguishable operations
An increasingly important design constraint for software running
on ubiquitous computing devices is security, particularly against
physical methods such as side-channel attack. One well studied methodology
for defending against such attacks is the concept of indistinguishable
functions which leak no information about program control
flow since all execution paths are computationally identical. However,
constructing such functions by hand becomes laborious and error prone
as their complexity increases. We investigate techniques for automating
this process and find that effective solutions can be constructed with
only minor amounts of computational effort.Fundação para a Ciência e Tecnologia - SFRH/BPD/20528/2004
Neutrino Mass and from a Mini-Seesaw
The recently proposed "mini-seesaw mechanism" combines naturally suppressed
Dirac and Majorana masses to achieve light Standard Model neutrinos via a
low-scale seesaw. A key feature of this approach is the presence of multiple
light (order GeV) sterile-neutrinos that mix with the Standard Model. In this
work we study the bounds on these light sterile-neutrinos from processes like
\mu ---> e + \gamma, invisible Z-decays, and neutrinoless double beta-decay. We
show that viable parameter space exists and that, interestingly, key
observables can lie just below current experimental sensitivities. In
particular, a motivated region of parameter space predicts a value of BR(\mu
---> e + \gamma) within the range to be probed by MEG.Comment: 1+26 pages, 7 figures. v2 JHEP version (typo's fixed, minor change to
presentation, results unchanged
Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A new search
method is used, "stacking'' the GW data around the times of individual
soft-gamma bursts in the storm to enhance sensitivity for models in which
multiple bursts are accompanied by GW emission. We assume that variation in the
time difference between burst electromagnetic emission and potential burst GW
emission is small relative to the GW signal duration, and we time-align GW
excess power time-frequency tilings containing individual burst triggers to
their corresponding electromagnetic emissions. We use two GW emission models in
our search: a fluence-weighted model and a flat (unweighted) model for the most
electromagnetically energetic bursts. We find no evidence of GWs associated
with either model. Model-dependent GW strain, isotropic GW emission energy
E_GW, and \gamma = E_GW / E_EM upper limits are estimated using a variety of
assumed waveforms. The stacking method allows us to set the most stringent
model-dependent limits on transient GW strain published to date. We find E_GW
upper limit estimates (at a nominal distance of 10 kpc) of between 2x10^45 erg
and 6x10^50 erg depending on waveform type. These limits are an order of
magnitude lower than upper limits published previously for this storm and
overlap with the range of electromagnetic energies emitted in SGR giant flares.Comment: 7 pages, 3 figure
Neutrinoless double-beta decay and seesaw mechanism
From the standard seesaw mechanism of neutrino mass generation, which is
based on the assumption that the lepton number is violated at a large
(~10exp(+15) GeV) scale, follows that the neutrinoless double-beta decay is
ruled by the Majorana neutrino mass mechanism. Within this notion, for the
inverted neutrino-mass hierarchy we derive allowed ranges of half-lives of the
neutrinoless double-beta decay for nuclei of experimental interest with
different sets of nuclear matrix elements. The present-day results of the
calculation of the neutrinoless double-beta decay nuclear matrix elements are
briefly discussed. We argue that if neutrinoless double-beta decay will be
observed in future experiments sensitive to the effective Majorana mass in the
inverted mass hierarchy region, a comparison of the derived ranges with
measured half-lives will allow us to probe the standard seesaw mechanism
assuming that future cosmological data will establish the sum of neutrino
masses to be about 0.2 eV.Comment: Some changes in sections I, II, IV, and V; two new figures;
additional reference
Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run
We summarize the sensitivity achieved by the LIGO and Virgo gravitational
wave detectors for compact binary coalescence (CBC) searches during LIGO's
fifth science run and Virgo's first science run. We present noise spectral
density curves for each of the four detectors that operated during these
science runs which are representative of the typical performance achieved by
the detectors for CBC searches. These spectra are intended for release to the
public as a summary of detector performance for CBC searches during these
science runs.Comment: 12 pages, 5 figure
- …
