9,737 research outputs found
Constraints on a strong X-ray flare in the Seyfert galaxy MCG-6-30-15
We discuss implications of a strong flare event observed in the Seyfert
galaxy MCG-6-30-15 assuming that the emission is due to localized magnetic
reconnection. We conduct detailed radiative transfer modeling of the
reprocessed radiation for a primary source that is elevated above the disk. The
model includes relativistic effects and Keplerian motion around the black hole.
We show that for such a model setup the observed time-modulation must be
intrinsic to the primary source. Using a simple analytical model we then
investigate time delays between hard and soft X-rays during the flare. The
model considers an intrinsic delay between primary and reprocessed radiation,
which measures the geometrical distance of the flare source to the reprocessing
sites. The observed time delays are well reproduced if one assumes that the
reprocessing happens in magnetically confined, cold clouds.Comment: 4 pages, 2 figures, proceedings of a talk given at the symposium 238
at the IAU General Assembly 200
Iron lines from transient and persisting hot spots on AGN accretion disks
[abridged] We model the X-ray reprocessing from a strong co-rotating flare
above an accretion disk in active galactic nuclei. We explore the horizontal
structure and evolution of the underlying hot spot. To obtain the spectral
evolution seen by a distant observer, we apply a general relativity ray-tracing
technique. We concentrate on the energy band around the iron K-line, where the
relativistic effects are most pronounced. Persistent flares lasting for a
significant fraction of the orbital time scale and short, transient flares are
considered. In our time-resolved analysis, the spectra recorded by a distant
observer depend on the position of the flare/spot with respect to the central
black hole. If the flare duration significantly exceeds the light travel time
across the spot, then the spot horizontal stratification is unimportant. On the
other hand, if the flare duration is comparable to the light travel time across
the spot radius, the lightcurves exhibit a typical asymmetry in their time
profiles. The sequence of dynamical spectra proceeds from more strongly to less
strongly ionized re-emission. At all locations within the spot the spectral
intensity increases towards edge-on emission angles, revealing the limb
brightening effect. Future X-ray observatories with significantly larger
effective collecting areas will enable to spectroscopically map out the
azimuthal irradiation structure of the accretion disk and to localize
persistent flares. If the hot spot is not located too close to the marginally
stable orbit of the black hole, it will be possible to probe the reflecting
medium via the sub-structure of the iron K-line. Indications for transient
flares will only be obtained from analyzing the observed lightcurves on the
gravitational time scale of the accreting supermassive black hole.Comment: 15 pages, 8 figures, accepted by Astronomy & Astrophysic
The puzzle of the soft X-ray excess in AGN: absorption or reflection?
The 2-10 keV continuum of AGN is generally well represented by a single power
law. However, at smaller energies the continuum displays an excess with respect
to the extrapolation of this power law, called the ''soft X-ray excess''. Until
now this soft X-ray excess was attributed, either to reflection of the hard
X-ray source by the accretion disk, or to the presence of an additional
comptonizing medium, giving a steep spectrum. An alternative solution proposed
by Gierlinski and Done (2004) is that a single power law well represents both
the soft and the hard X-ray emission and the impression of the soft X-ray
excess is due to absorption of a primary power law by a relativistic wind. We
examine the advantages and drawbacks of reflection versus absorption models,
and we conclude that the observed spectra can be well modeled, either by
absorption (for a strong excess), or by reflection (for a weak excess). However
the physical conditions required by the absorption models do not seem very
realistic: we would prefer an ''hybrid model''.Comment: 4 pages, 3 figures, abstracts SF2A-2005, published by EDP-Sciences
Conference Serie
X-ray Variability of AGN and the Flare Model
Short-term variability of X-ray continuum spectra has been reported for
several Active Galactic Nuclei. Significant X-ray flux variations are observed
within time scales down to 10^3-10^5 seconds. We discuss short variability time
scales in the frame of the X-ray flare model, which assumes the release of a
large hard X-ray flux above a small portion of the accretion disk. The
resulting observed X-ray spectrum is composed of the primary radiation and of a
reprocessed Compton reflection component that we model with numerical radiative
transfer simulations. The incident hard X-rays of the flare will heat up the
atmosphere of the accretion disk and hence induce thermal expansion.
Eventually, the flare source will be surrounded by an optically thick medium,
which should modify the observed spectra.Comment: 4 pages, 3 figures, accepted proceedings for a talk at the conference
"AGN variability from the X-rays to the radio", June 2004, Crimean
Observator
The analysis of solar models: Neutrinos and oscillations
Tests of solar neutrino flux and solar oscillation frequencies were used to assess standard stellar structure theory. Standard and non-standard solar models are enumerated and discussed. The field of solar seismology, wherein the solar interior is studied from the measurement of solar oscillations, is introduced
The projective translation equation and unramified 2-dimensional flows with rational vector fields
Let X=(x,y). Previously we have found all rational solutions of the
2-dimensional projective translation equation, or PrTE,
(1-z)f(X)=f(f(Xz)(1-z)/z); here f(X)=(u(x,y),v(x,y)) is a pair of two (real or
complex) functions. Solutions of this functional equation are called projective
flows. A vector field of a rational flow is a pair of 2-homogenic rational
functions. On the other hand, only special pairs of 2-homogenic rational
functions give rise to rational flows. In this paper we are interested in all
non-singular (satisfying the boundary condition) and unramified (without
branching points, i.e. single-valued functions in C^2\{union of curves})
projective flows whose vector field is still rational. We prove that, up to
conjugation with 1-homogenic birational plane transformation, these are of 6
types: 1) the identity flow; 2) one flow for each non-negative integer N -
these flows are rational of level N; 3) the level 1 exponential flow, which is
also conjugate to the level 1 tangent flow; 4) the level 3 flow expressable in
terms of Dixonian (equianharmonic) elliptic functions; 5) the level 4 flow
expressable in terms of lemniscatic elliptic functions; 6) the level 6 flow
expressable in terms of Dixonian elliptic functions again. This reveals another
aspect of the PrTE: in the latter four cases this equation is equivalent and
provides a uniform framework to addition formulas for exponential, tangent, or
special elliptic functions (also addition formulas for polynomials and the
logarithm, though the latter appears only in branched flows). Moreover, the
PrTE turns out to have a connection with Polya-Eggenberger urn models. Another
purpose of this study is expository, and we provide the list of open problems
and directions in the theory of PrTE; for example, we define the notion of
quasi-rational projective flows which includes curves of arbitrary genus.Comment: 34 pages, 2 figure
The creation of an in vitro germplasm collection of yam (Dioscorea spp.) for genetic resources preservation
- …
