3,086 research outputs found
Electron localisation in static and time-dependent one-dimensional model systems
Electron localization is the tendency of an electron in a many-body system to
exclude other electrons from its vicinity. Using a new natural measure of
localization based on the exact manyelectron wavefunction, we find that
localization can vary considerably between different ground-state systems, and
can also be strongly disrupted, as a function of time, when a system is driven
by an applied electric field. We use our new measure to assess the well-known
electron localization function (ELF), both in its approximate single-particle
form (often applied within density-functional theory) and its full
many-particle form. The full ELF always gives an excellent description of
localization, but the approximate ELF fails in time-dependent situations, even
when the exact Kohn-Sham orbitals are employed.Comment: 7 pages, 4 figure
Dimension-adaptive bounds on compressive FLD Classification
Efficient dimensionality reduction by random projections (RP) gains popularity, hence the learning guarantees achievable in RP spaces are of great interest. In finite dimensional setting, it has been shown for the compressive Fisher Linear Discriminant (FLD) classifier that forgood generalisation the required target dimension grows only as the log of the number of classes and is not adversely affected by the number of projected data points. However these bounds depend on the dimensionality d of the original data space. In this paper we give further guarantees that remove d from the bounds under certain conditions of regularity on the data density structure. In particular, if the data density does not fill the ambient space then the error of compressive FLD is independent of the ambient dimension and depends only on a notion of ‘intrinsic dimension'
Novel cruzain inhibitors for the treatment of Chagas' disease.
The protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas' disease, affects millions of individuals and continues to be an important global health concern. The poor efficacy and unfavorable side effects of current treatments necessitate novel therapeutics. Cruzain, the major cysteine protease of T. cruzi, is one potential novel target. Recent advances in a class of vinyl sulfone inhibitors are encouraging; however, as most potential therapeutics fail in clinical trials and both disease progression and resistance call for combination therapy with several drugs, the identification of additional classes of inhibitory molecules is essential. Using an exhaustive virtual-screening and experimental validation approach, we identify several additional small-molecule cruzain inhibitors. Further optimization of these chemical scaffolds could lead to the development of novel drugs useful in the treatment of Chagas' disease
Viral antibody dynamics in a chiropteran host
1. Bats host many viruses that are significant for human and domestic animal health, but the dynamics of these infections in their natural reservoir hosts remain poorly elucidated.<p></p>
2. In these, and other, systems, there is evidence that seasonal life-cycle events drive infection dynamics, directly impacting the risk of exposure to spillover hosts. Understanding these dynamics improves our ability to predict zoonotic spillover from the reservoir hosts.<p></p>
3. To this end, we followed henipavirus antibody levels of >100 individual E. helvum in a closed, captive, breeding population over a 30-month period, using a powerful novel antibody quantitation method.<p></p>
4. We demonstrate the presence of maternal antibodies in this system and accurately determine their longevity. We also present evidence of population-level persistence of viral infection and demonstrate periods of increased horizontal virus transmission associated with the pregnancy/lactation period.<p></p>
5.The novel findings of infection persistence and the effect of pregnancy on viral transmission, as well as an accurate quantitation of chiropteran maternal antiviral antibody half-life, provide fundamental baseline data for the continued study of viral infections in these important reservoir hosts
Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water
Conjugated microporous polymers (CMPs) have been used as photocatalysts for hydrogen production from water in the presence of a sacrificial electron donor. The relative importance of the linker geometry, the co-monomer linker length, and the degree of planarisation were studied with respect to the photocatalytic hydrogen evolution rate
Inverse problem of photoelastic fringe mapping using neural networks
This paper presents an enhanced technique for inverse analysis of photoelastic fringes using neural networks to determine the applied load. The technique may be useful in whole-field analysis of photoelastic images obtained due to external loading, which may find application in a variety of specialized areas including robotics and biomedical engineering. The presented technique is easy to implement, does not require much computation and can cope well within slight experimental variations. The technique requires image acquisition, filtering and data extraction, which is then fed to the neural network to provide load as output. This technique can be efficiently implemented for determining the applied load in applications where repeated loading is one of the main considerations. The results presented in this paper demonstrate the novelty of this technique to solve the inverse problem from direct image data. It has been shown that the presented technique offers better result for the inverse photoelastic problems than previously published works
The Excitation Wavelength and Solvent Dependance of the Kinetics of Electron Injection in Ru(dcbpy)2(NCS)2 Sensitized Nanocrystalline TiO2 Films
Dynamics of the solar chromosphere. V. High-frequency modulation in ultraviolet image sequences from TRACE
We search for signatures of high-frequency oscillations in the upper solar
photosphere and low chromosphere in the context of acoustic heating of outer
stellar atmospheres. We use ultraviolet image sequences of a quiet center-disk
area from the Transition Region and Coronal Explorer (TRACE) mission which were
taken with strict cadence regularity. The latter permits more reliable
high-frequency diagnosis than in earlier work. Spatial Fourier power maps,
spatially averaged coherence and phase-difference spectra, and spatio-temporal
k-f decompositions all contain high-frequency features that at first sight seem
of considerable intrinsic interest but actually are more likely to represent
artifacts of different nature. Spatially averaged phase difference measurement
provides the most sensitive diagnostic and indicates the presence of acoustic
modulation up to f=20 mHz (periods down to 50 seconds) in internetwork areas.Comment: 9 pages, 8 figure
Prospects for photon blockade in four level systems in the N configuration with more than one atom
We show that for appropriate choices of parameters it is possible to achieve
photon blockade in idealised one, two and three atom systems. We also include
realistic parameter ranges for rubidium as the atomic species. Our results
circumvent the doubts cast by recent discussion in the literature (Grangier et
al Phys. Rev Lett. 81, 2833 (1998), Imamoglu et al Phys. Rev. Lett. 81, 2836
(1998)) on the possibility of photon blockade in multi-atom systems.Comment: 8 page, revtex, 7 figures, gif. Submitted to Journal of Optics B:
Quantum and Semiclassical Optic
- …
